1 Şubat 2017 Çarşamba

BİTKİLERDEKİ YARATILIŞ MUCİZESİ



GİRİŞ
Hepimizin ne olduğunu çok iyi bildiği "tohum" için şöyle bir soru soralım: Ağaç kabuğu kadar sert bir kabuk içinde bulunan tohumla, bir ağaç kabuğunun farkı nedir? 
Bu tarz sorular genelde "alışılmadık" sorulardır; çünkü tohum da, ağaç kabuğu da günlük hayatta birçok uğraşısı olan insan için önemsiz detaylardır. Birçok insana göre, etrafta düşünülmesi gereken çok daha önemli, çok daha gerekli şeyler vardır. 
Çevresine sadece yüzeysel gözle bakarak hareket eden kişilerde bu mantık oldukça yaygındır. Bu insanlar için, herhangi bir konu hakkında yalnızca ihtiyaçları karşılayacak kadar detay bilmek yeterlidir. Bu sığ mantığa göre etrafta olan biten her şey alışılagelmiş ve sıradandır, herşeyin mutlaka "bilinen", "alışılmış" bir açıklaması vardır. Sinek uçar çünkü kanatları vardır, ay zaten hep gökyüzündedir. Dünya uzaydan gelebilecek tehlikelerden korunmaktadır çünkü atmosfer vardır. Oksijen dengesi de hiç bozulmaz . İnsan duyar, görür, koku alır…
Oysa bu dar mantığı bırakıp da etrafındaki olaylara, her şeyle ilk defa karşılaşan bir kimse gibi, görüşünü sınırlayan alışkanlık perdesini kaldırarak bakan insan, önünde çok geniş bir ufkun açıldığını görür. Neden, nasıl, niçin sorularını daha sık sorarak düşünmeye, etrafında olan bitenleri bu gözle incelemeye başlar. Daha önceleri kendisine doyurucu gelen açıklamalar yetersizleşmeye başlar. Çevrede meydana gelen olaylarda, canlıların sahip oldukları özelliklerde, kısacası her şeyde bir olağanüstülük olduğunu kavramaya başlar. Düşünmeye başladıkça alışkanlık, yerini hayrete bırakır. Sonunda her şeyin sonsuz güç, bilgi ve akıl sahip bir Yaratıcı tarafından, üstün ve mükemmel bir şekilde tasarlanıp, yaratılmış olduğunu görür. İşte o andan itibaren bu insan, Alemlerin Rabbi olan Allah`ın, yarattığı tüm canlılar üzerindeki kudret ve hakimiyetini görebilir.
Şüphesiz, göklerin ve yerin yaratılmasında, gece ile gündüzün art arda gelişinde, insanlara yararlı şeyler ile denizde yüzen gemilerde, Allah`ın yağdırdığı ve kendisiyle yeryüzünü ölümünden sonra dirilttiği suda, her canlıyı orada üretip-yaymasında, rüzgarları estirmesinde, gökle yer arasında boyun eğdirilmiş bulutları evirip çevirmesinde düşünen bir topluluk için gerçekten ayetler vardır. (Bakara Suresi, 164)



BİTKİLERİN DÜNYASI
Bitkilerin varlığı yeryüzündeki canlılığın devamı için vazgeçilmezdir. Bu cümlenin taşıdığı önemin tam olarak kavranabilmesi için şöyle bir soru sormak gerekir: "İnsan yaşamı için en önemli unsurlar nelerdir?" Bu sorunun cevabı olarak akla elbetteki oksijen, su, besin gibi temel ihtiyaç maddeleri gelir. İşte tüm bu temel maddelerin yeryüzündeki dengesini sağlayan en önemli faktör yeşil bitkilerdir. Bundan başka yine yeryüzündeki ısı kontrolünün sağlanması, atmosferdeki gazların dengesinin korunması gibi, sadece insanlar için değil bütün canlılar için son derece büyük önem taşıyan başka dengeler de vardır, ki bütün bu dengeleri sağlayanlar da yine yeşil bitkilerdir.
Yeşil bitkilerin faaliyetleri sadece bunlarla sınırlı değildir. Bilindiği gibi yeryüzündeki yaşamın ana enerji kaynağı Güneş`tir. Ancak insanlar ve hayvanlar, güneş enerjisini doğrudan kullanamazlar, çünkü bünyelerinde bu enerjiyi olduğu gibi kullanabilecekleri sistemler yoktur. Bu yüzden güneş enerjisi de ancak bitkilerin ürettiği besinler aracılığıyla, kullanılabilir enerji olarak insanlara ve hayvanlara ulaşır. Hücrelerimiz tarafından kullanılan enerji hammaddelerinin tümü, gerçekte bitkiler aracılığıyla bize taşınan güneş enerjisidir. Örneğin çayımızı yudumlarken aslında güneş enerjisi yudumlarız, ekmek yerken dişlerimizin arasında bir miktar güneş enerjisi vardır. Kaslarımızdaki kuvvetse gerçekte güneş enerjisinin farklı formundan başka bir şey değildir. Bitkiler güneş enerjisini bizim için karmaşık işlemler yaparak bünyelerindeki moleküllere depolamışlardır. Hayvanlar için de durum insanlardan farklı değildir. Onlar da bitkilerle beslenir ve bu sayede onların enerji paketleri haline getirerek depoladıkları güneş enerjisini kullanırlar.
Bitkilerin kendi besinlerini kendilerinin üretebilmelerini ve diğer canlılardan ayrıcalıklı olmalarını sağlayan ise, hücrelerinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini doğrudan kullanabilen yapıların bulunmasıdır. Bitki hücreleri bu yapıların yardımıyla, güneşten gelen enerjiyi, insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve formülü yapılarında saklı olan çok özel işlemlerle, besinlere bu enerjiyi depolarlar. Bu özel işlemlerin tümüne birden fotosentez denir.
Bitkilerin fotosentez yapabilmeleri için gerekli olan mekanizma, daha doğru bir anlatımla minyatür fabrika, bitkilerin yapraklarında bulunur. Gerekli olan mineralleri ve su gibi maddeleri taşıyacak son derece özel bir yapıya sahip olan taşıma sistemi de bitkinin gövdesinde ve köklerinde mevcuttur. Üreme sistemi ise her bitki türü için yine özel olarak tasarlanmıştır. 
Bütün bu mekanizmaların her birinin kendi içlerinde kompleks yapıları vardır. Ve bu mekanizmalar birbirlerine bağlı olarak çalışırlar. Biri olmadan diğerleri fonksiyonlarını yerine getiremezler. Örnek olarak sadece taşıma sistemi olmayan bir bitkiyi ele alalım. Böyle bir bitkinin fotosentez yapması imkansızdır. Çünkü fotosentez yapması için gerekli olan suyu taşıyacak kanalları yoktur. Bitki besin üretmeyi başarmış olsa bile bunu gövdenin diğer bölümlerine taşıyamayacağından bir işe yaramayacak, bir süre sonra ölecektir. 
Bu örnekte olduğu gibi bir bitkide bulunan bütün sistemlerin kusursuz bir biçimde işlemesi zorunludur. Oluşacak aksaklıklar ya da mevcut yapıdaki bir eksiklik bitkinin işlevlerini yerine getirememesine neden olacak, bu da bitkinin ölümüyle ve türünün yok olmasıyla sonuçlanacaktır.
İleriki bölümlerde geniş bir şekilde ele alınacak olan bu yapılar detaya inilerek incelendiğinde, son derece kompleks ve kusursuz bir tasarımın ortaya çıktığı görülecektir. Yeryüzündeki bitki çeşitliliği de göz önüne alınarak değerlendirildiğinde, bitkilerdeki bu olağanüstü yapılar daha da dikkat çekici hale gelecektir.Yeryüzünde 500.000`den fazla bitki çeşidi bulunmaktadır.1 İşte bütün bu bitki türlerinin her biri kendi içinde özel tasarımlara ve türlerine özgü sistemlere sahiptirler. Temel olarak hepsinde aynı mükemmel sistemler bulunmakla beraber, üreme sistemleri, savunma mekanizmaları, renk ve desen açısından benzersiz bir çeşitlilik söz konusudur. Bu çeşitlilikte değişmeyen tek şey; bitkilerde kurulu olan genel düzenin işlemesi için bitkideki bütün parçaların (yaprak ve yapraktaki yapılar, kökler, taşıma sistemleri, kabuk, saplar) ve daha pek çok mekanizmanın bir anda ve eksiksiz bir biçimde var olması gerektiği gerçeğidir.
Günümüzde bilimadamları böyle sistemler için "indirgenemez komplekslik" tanımını kullanmaktadırlar. Nasıl ki bir motor herhangi bir dişlisinin eksik olması durumunda çalışamaz hale gelirse, aynı şekilde bitkilerde de tek bir sistemin dahi eksik olması veya sistemin parçalarının görevlerinden birini yerine getirmemesi de bu bitkinin ölümüne neden olur.
İndirgenemez komplekslik özelliği, bitkinin bütün sistemlerinde mevcuttur. Aynı anda bulunması gereken kompleks yapılar ve bu inanılmaz çeşitlilik "bitkilerdeki mükemmel sistemlerin nasıl ortaya çıktığı" sorusunu akla getirmektedir. 
Bu sorunun cevabını bulabilmek için yine sorular sorarak düşünelim. Bitkilerdeki mekanizmalardan en önemlisi ve en bilineni olan fotosentez işleminin ve ona bağlı olarak da taşıma sistemlerinin nasıl ortaya çıktığını düşünelim.
Her an her yerde gördüğümüz ağaçlar, çiçekler besin üretebilmek için, fotosentez gibi hala bazı noktaları çözülememiş bir olayı gerçekleştirebilecek kadar mükemmel sistemleri bünyelerinde kendileri oluşturmuş olabilirler mi? Havadaki gazların içinden karbondioksiti (CO2), besin yaparken kullanmak üzere bitkiler mi seçmiştir? Kullanacakları CO2 miktarını kendileri mi belirlemiştir? Fotosentez için ihtiyaç duydukları maddeleri topraktan alabilmeleri için gerekli kök sistemini oluşturan mekanizmayı bitkiler tasarlamış olabilirler mi? Besin taşımada ayrı, su taşımada ayrı özellikte borular olacak şekilde bir taşıma sistemini bitkiler mi meydana getirmişlerdir?
Bu soruları çoğaltabiliriz. Ancak her sorunun cevabı aynı noktaya varacaktır. Bitkilerdeki her ayrıntıda ayrı bir tasarım vardır. Yukarıda bitkilere dair saydığımız tüm özellikler akıl, bilgi, ölçme ve değerlendirme gibi kavramlar gerektirdiğinden bitkiler bu sayılanların hiçbirini kendileri yapamazlar. Dahası, bitkiler böyle bir bilince de sahip değildirler.
Bitkilerin nasıl ortaya çıktığı sorusuna cevap arayan evrim teorisi savunucuları her zamanki gibi tek çareleri olan "tesadüfler"e başvurmuşlardır. Tesadüflerle meydana geldiğini öne sürdükleri bir bitki türünden, yine tesadüflerle zaman içinde sayısız çeşitlilikte bitkinin ortaya çıktığını, her türün kendine özgü olan koku, tat, renk gibi özelliklerinin de yine bu tesadüfler sonucu ortaya çıktıklarını iddia etmişlerdir. Bu iddialarına da hiçbir bilimsel kanıt getirememişlerdir. Bir yosunun nasıl olup da bir çileğe ya da bir kavak ağacına veya bir gül ağacına dönüştüğünü evrimciler, tesadüflerin oluşturduğu şartların bunları farklılaştırması şeklinde açıklarlar. Oysa bir bitkinin tek bir hücresi dahi incelendiğinde, zaman içinde küçük değişikliklerle meydana gelemeyecek kadar kompleks bir sistemin olduğu görülecektir. İşte bitkilerdeki bu kompleks sistem ve mekanizmalar evrimci mantıkla ortaya atılan tesadüf senaryolarını daha en başından kesin bir biçimde çökertmektedir. Bu durumda ortaya tek bir sonuç çıkar.
Bitkilerdeki her yapı özel olarak planlanmıştır, tasarlanmıştır. Bu da bize bu kusursuz planı yapan üstün bir Aklın olduğunu gösterir. İşte bu üstün aklın sahibi Alemlerin Rabbi olan Allah, kusursuz yaratışının delillerini insanlara göstermektedir. Allah canlılar üzerindeki hakimiyetini ve benzersiz yaratışını bir ayette şöyle bildirmektedir:
Gökleri ve yeri bir örnek edinmeksizin Yaratandır... İşte Rabbiniz olan Allah budur. O`ndan başka ilah yoktur. Her şeyin Yaratıcısıdır, öyleyse O`na kulluk edin. O, her şeyin üstünde bir vekildir. (Enam Suresi, 101-102)



VE BİR BİTKİ DOĞUYOR
Yeryüzündeki ekolojik dengenin ve canlılığın devamında son derece önemli bir role sahip olan bitkiler, bu önemle doğru orantılı olarak diğer canlılara kıyasla çok daha etkin üreme sistemlerine sahiptirler. Bu sayede hiç zorluk çekmeden çoğalmalarını gerçekleştirirler. Bitkilerin üremesi için kimi zaman bir bitkinin sapının kesilerek toprağa gömülmesi, kimi zaman da bir böceğin bir çiçeğe konması yeterli olmaktadır. 
Bitkilerin üremelerinin, işlem olarak son derece basit gibi görünmesine rağmen, içerik olarak oldukça kompleks olması bilimadamlarını hayrete düşürmektedir.



Ana Bitkiden Ayrılmayla Başlayan Yeni Bir Hayat 
Bazı bitkiler cinsiyet ayrımı olmadan, tek bir cinsin belirli yollarla çoğalmasıyla soylarını devam ettirebilirler. Bu gerçekleştirilen çoğalmaya eşeysiz üreme adı verilir. Bu şekildeki bir üremeden sonra ortaya çıkan yeni nesil kendisini meydana getiren neslin tıpatıp aynısı olur. Bitkilerdeki en bilinen eşeysiz üreme şekilleri tomurcuklanma ve parçalara ayrılmadır. 
Bazı özel enzimlerin yardımıyla gerçekleşen bu üreme biçimi (tomurcuklanma veya parçalanma) pek çok bitkide görülebilir. Örneğin çimenler ve çilekler "sürgün" denilen yatay uzantılarını kullanarak çoğalırlar. Patates ise toprağın altında yetişen bir bitki olarak, bu kısımlarda açılan yeni özel yerlerden (gözelerden) tomurcuklar vererek çoğalır.2
Bazı tür bitkilerde ise yapraklarından bir bölümünün toprağa düşmesi, yeni bir bitkinin yetişmesi için yeterli olmaktadır. Örneğin phyllum daigremontianum adlı bitkinin üremesi yapraklarının ucunda gelişen tomurcuklar sayesinde gerçekleşir. Bu tomurcuklar yere düşer düşmez, bağımsız birer yeni bitki haline gelerek, büyümeye başlarlar.3 
Begonya gibi bazı bitkilerde de kopan yapraklar ıslak bir kuma yerleştirildiği zaman, bir süre sonra küçük yaprakçıkların oluştuğu görülecektir. İşte bu yaprakçıklar da yine çok kısa bir süre sonra ana bitkinin benzeri olan yeni bitkiyi oluşturmaya başlarlar.4
Bu örnekleri de göz önüne alarak; bir bitkinin parça atarak ya da tomurcuklanarak büyümesi için temelde ne gereklidir? Düşünelim! Bitkilerin genetik yapısına bakıldığında bu sorunun cevabı kolaylıkla verilecektir.
Bitkilerin de, diğer canlılarda olduğu gibi, tüm yapısal özellikleri hücrelerindeki DNA`larda şifrelenmiştir. Yani her bir bitkinin nasıl çoğalacağı, nasıl nefes alacağı, besinini nasıl sağlayacağı, rengi, kokusu, tadı, içindeki şekerin miktarı, üreme şekli ve daha bunun gibi birçok bilgi o bitkinin istisnasız bütün hücrelerinde bulunmaktadır. Bitkinin köklerindeki hücreler yaprakların nasıl fotosentez yapacağının bilgisine sahiptir ya da yapraklarındaki hücreler köklerin topraktan suyu nasıl çekeceğini bilirler. Kısacası bitkiden ayrılan her parçada, bitkinin tamamını oluşturabilecek şekilde bir şifrelenme ve düzenlenme mevcuttur. Ana bitkinin tüm özellikleri yani genetik olarak bitkiyle ilgili tüm bilgiler, bitkiden kopan bu küçük parçanın her hücresinde de eksiksiz olarak bulunmaktadır.5 
Bu sistemle üreyen bitkilerin her parçasında aynı genetik bilginin olması son derece önemlidir, hatta bu zorunludur. Çünkü bitkinin üremesi sadece bu sistemin işlemesine bağlıdır. Düşen parçada bitkideki genetik bilgilerin tamamı olmasa, aynı özelliklerde bir bitki gelişemez. Bunu bir örnekle açıklayalım. Genetik bilgilerde eksiklik olsa; örneğin bir çileğin rengi ya da içindeki şeker miktarı, kokusu ile ilgili genetik bilgi yeni düşen parçada olmasa çilek, çilek olamazdı. 
Peki öyleyse bitkinin her parçasına, bitkinin tamamını oluşturabilecek bilgiler eksiksiz olarak nasıl ve kim tarafından yerleştirmiştir?
Bir bitkideki tüm bilgilerin eksiksiz bir şekilde bütün hücrelerde aynı olması ihtimal hesaplarıyla, tesadüflerin yardımıyla elde edilemez. Bu işlemi gerçekleştiren, bitkinin kendisi ya da topraktaki mineraller ya da başka dış etmenler de olamaz. Çünkü bunların hepsi bitkiyi oluşturan sistemin bir parçasıdır. Nasıl ki bir fabrikadaki tüm robotlara aynı üretim bilgisini veren bir mühendis vardır ve bilgisayarların bu bilgileri tek başına elde etmeleri mümkün değildir, aynı şekilde bitkilerdeki sistemin her bir parçasının böyle bir bilgiyi kendi kendine elde etmesi de mümkün değildir. 
Yeryüzündeki tüm canlılarda olduğu gibi, bitkilerin hücrelerine de gerekli bilgileri yerleştiren, hiç kuşkusuz ki her şeyi eksiksiz yaratan, her türlü yaratmadan haberdar olan Allah`tır. Allah bu gerçeğe pek çok ayetinde dikkat çekmiştir:
O, biri diğeriyle `tam bir uyum (mutabakat) içinde yedi gök yaratmış olandır. Rahman (olan Allah)ın yaratmasında hiçbir `çelişki ve uygunsuzluk (tefavüt) göremezsin. İşte gözü(nü) çevirip-gezdir; herhangi bir çatlaklık (bozukluk ve çarpıklık) görüyor musun? Sonra gözünü iki kere daha çevirip-gezdir; o göz (uyumsuzluk bulmaktan) umudunu kesmiş bir halde bitkin olarak sana dönecektir. (Mülk Suresi, 3-4)
Görmedin mi, Allah, gökten su indirdi, böylece yeryüzü yemyeşil donatıldı. Şüphesiz Allah, lütfedicidir, her şeyden haberdardır. (Hac Suresi, 63)



Eşeyli Üreyen Bitkiler
Bitkinin çiçeğinde bulunan erkek ve dişi üreme organları vasıtasıyla gerçekleşen üreme şekli, eşeyli üreme olarak adlandırılır. Her çiçeğin şekli, rengi, içerdiği üreme hücrelerinin kılıfları, taç yaprakları gibi özellikleri bitki türleri arasında değişiklikler gösterir. Yapılardaki bu çeşitliliğe rağmen bütün çiçeklerin görevleri temelde aynıdır. Bu görevler; üreme hücrelerini üretmek, dağıtıma hazır hale getirmek ve kendisine ulaşan diğer üreme hücresinin döllenmesini gerçekleştirmektir. 
Çiçeklerin açmaya başladıkları dönemde ortaya çıkan polenler, bitkilerin erkek üreme hücreleridirler. Görevleri, kendi türlerinin çiçeklerindeki dişi organlara ulaşabilmek ve ait oldukları bitkinin neslinin devamını sağlamaktır. 
Her bitkinin polenlerini göndermek için ise kendine özgü bir yöntemi ya da kullandığı bir mekanizması vardır. Bitkilerden kimileri böcekleri kullanırlar, kimileriyse rüzgarın özelliklerinden faydalanırlar. Bitkilerin döllenmesinde kuşkusuz ki en önemli nokta her bitkinin yalnız kendi türünden olan bir bitkiyi dölleyebilmesidir. Bu yüzden doğru polenlerin doğru bitkiye gitmesi son derece önemlidir.
Peki, özellikle bahar aylarında havada bu kadar çok çeşitte polen dolaşırken, nasıl olup da döllenmede hiç karışıklık çıkmaz? Polenler uzun yolculuklara ve değişen şartlara nasıl dayanıklılık gösterirler? 
Tüm bu soruların cevabı polenin yapısı ve dağılma yöntemleri incelendiğinde verilmiş olacaktır.



Polenlerden Tohuma Doğru... Mükemmel Ambalajlanmış Genler: Polenler
Polenler ilk olarak çiçeklerin erkek üreme organlarında üretilirler ve oradan da çiçeğin dış bölümüne doğru ilerlerler. Buraya ulaştıktan sonra da olgunlaşmaya başlarlar ve sonraki nesil için döllenmeye hazır hale gelirler. Bu polenin hayatındaki ilk aşamadır.
Öncelikle polenin yapısına biraz göz atalım. Polen, gözle görülemeyecek kadar küçük bir mikroorganizmadır (kayın ağacını poleni 2, kabağın poleni ise 200 mikron büyüklüğündedir) (1 mikron=1/1000mm). İçinde büyük gövdeli bir hücre (vejetatif hücre) ile iki sperm hücresi (generatif hücre) bulunur. 
Polen bir tür kutuya benzetilebilir. Polenin içinde bitkinin üreme hücreleri vardır. Bu hücrelerin çoğu dış etkenlerden zarar görmeden canlılıklarını koruyabilmeleri için çok iyi bir şekilde saklanmaları gerekir. Bu yüzden kutunun yapısı son derece sağlamdır. Kutunun etrafı "sporoderm" diye adlandırılan bir kabuk tarafından sarılmıştır. Bu kabuğun dış kısmında bulunan ve "ekzin" olarak adlandırılan tabaka, organik alemin bilinen en dayanıklı maddesidir ve kimyasal yapısı henüz tam olarak aydınlatılamamıştır.6 Bu madde genel olarak asitlerin ve enzimlerin yol açtığı bozulmalara karşı çok dirençlidir. Ayrıca yüksek sıcaklık ve basınçtan da etkilenmez. Görüldüğü gibi, bitkilerin devamlılığı için varlıkları zorunlu olan polenlerin korunmaları için çok detaylı tedbirler alınmıştır; polenler adeta özel olarak ambalajlanmışlardır. Bu sayede polenler hangi metodla taşınırlarsa taşınsınlar, ana gövdelerinden kilometrelerce uzaklıkta dahi canlılıklarını sürdürebilirler. Polenlerin çok dayanıklı bir maddeyle kaplanmış olmalarının yanı sıra sayıca çok olmaları da o bitkinin çoğalmasını garanti altına almış olur. 
Polendeki bu detaylı yapıda da görüldüğü gibi Allah yarattığı her şeyde bize benzersiz sanatını gösterir ve bunların üzerinde düşünmemizi ister. Buna Kurandaki pek çok ayette dikkat çekilmiştir:
Yeryüzünde birbirine yakın komşu kıtalar vardır; üzüm bağları, ekinler, çatallı ve çatalsız hurmalıklar da vardır ki, bunlar aynı su ile sulanır; ama ürünlerinde (ki verimde ve lezzette) bazısını bazısına üstün kılıyoruz. Şüphesiz, bunlarda aklını kullanan bir topluluk için gerçekten ayetler vardır. (Rad Suresi, 4)
Polenlerin, dölleyecekleri çiçeklere ulaşabilmeleri için genellikle iki farklı yol vardır: Döllenme işleminin ilk aşaması olan taşınma işlemi, polenlerin bir arının, bir kelebeğin ya da herhangi bir böceğin vücuduna yapışıp kendilerini taşıttırmaları veya rüzgarın akışına uygun olarak yol almaları şeklinde gerçekleşir.



Rüzgara Yelken Açan Polenler
Yeryüzündeki pek çok bitki, türünün devamını polenlerini rüzgar vasıtasıyla dağıtarak sağlar. Birçok açık tohumlu bitki, çam ağaçları, palmiye ve benzeri ağaçlar ve ayrıca çiçek veren tüm tohumlu bitkiler ile çimensi otların tamamı rüzgarlarla döllenir. Rüzgar, çiçek tozlarını bitkilerden alıp, aynı türden diğer bitkilere taşıyarak döllenmeyi gerçekleştirir. 
Rüzgarla döllenme işleminde, halen bilimadamlarının açıklama getirmekte zorlandıkları pek çok nokta ve cevap bekleyen pek çok soru vardır. Örneğin rüzgarla taşınan binlerce polen çeşidinden her biri, kendi türüne ait olan bitkinin çiçeğini nasıl tanımaktadır? Bitkiden fırlatılan polenler hiçbir yere takılmadan nasıl olup da bu bitkinin dişilik organlarına ulaşırlar? Döllenme ihtimali oldukça düşük olmasına rağmen nasıl olup da binlerce bitki, üstelik de milyonlarca yıldır bu yolla döllenmektedir? 
İşte bu soruların cevabını verebilmek için yola çıkan Cornell Üniversitesi`nden Karl J. Niklas ve ekibi rüzgarla döllenen bitkileri incelemeye almışlardır. Buldukları sonuçlar son derece şaşırtıcı olmuştur. Niklas ve ekibi rüzgarla döllenen bitkilerin havadan bol miktarda polen yakalayabilmelerini sağlayan, aerodinamik çiçek yapılarının olduğunu keşfetmişlerdir.
Bitkilerdeki bu aerodinamik yapı nedir? Nasıl bir etkisi vardır? Bu soruların cevaplarını verebilmek için öncelikle "aerodinamik yapı" tanımının açıklanması gerekir. Havada hareket eden cisimlere hava akımlarından kaynaklanan bazı kuvvetler etki eder. Aerodinamik kuvvetler olarak adlandırılan bu kuvvetler sayesinde, hareket etmeyi başarabilen cisimler de "aerodinamik yapıya sahip cisimler" olarak adlandırılırlar. Rüzgarla polenleşme sistemini kullanan bazı bitkiler işte bu aerodinamik yapıyı çok etkili bir biçimde kullanırlar. Bu konudaki en güzel örnek çam kozalaklarının yapısında görülür.



Aerodinamik Kozalaklar
Karl Niklas ve ekibinin rüzgarla polenleşmeyi incelemelerine sebep olan sorulardan belki de en önemlisi, "nasıl olup da havada bu kadar çok çeşitte polen dolaşırken, bir bitki çeşidinin polenleri başka bir bitki türü tarafından tutulmamakta ve sadece kendi türünden diğer bitkilere ulaştırılmaktadır" sorusu olmuştur. İşte bu soru, bilimadamlarını rüzgarla döllenen bitkileri, özellikle de kozalakları incelemeye yöneltmiştir. 
Oldukça uzun olan yaşam süreleri ve yüksek boylarıyla tanınan kozalaklı ağaçlarda, kozalaklar erkek ve dişi yapıları oluştururlar. Erkek ve dişi kozalaklar aynı ağaçta olduğu gibi farklı ağaçlarda da olabilirler. Kozalaklarda, polenleri taşıyan hava akımını kendilerine çekecek özel tasarlanmış kanallar vardır. Polenler, oluşan bu kanallar sayesinde üreme alanlarına kolaylıkla gelirler.
Dişi kozalaklar, erkek kozalaklara göre daha büyüktürler ve tek olarak büyürler. Dişi kozalakların merkez eksenleri etrafında çok fazla miktarda yaprak benzeri yapılar olan "sporofil"ler vardır. Bunlar, balık puluna benzeyen kabuk şeklinde yapılardır. Sporofillerin iç yüzeylerinde iki adet ovül (yumurtanın oluşturulduğu kısım) bulunur. Kozalaklar polenleşmeye hazır olduğunda bu kabuklar iki yana açılır. Böylece erkek kozalaktan gelen polenlerin içeri girmesine olanak sağlanmış olur. 
Bundan başka polenlerin kolaylıkla kozalağın içine girmesini sağlayan özel yardımcı yapılar da vardır. Örneğin dişi kozalakların pulları yapışkan kıllarla döşenmiştir. Bu kıllar sayesinde polenler döllenme için kolaylıkla içeri alınabilmektedirler. Döllenmeden sonra dişi kozalaklar, çekirdek ihtiva eden odunsu ve derimsi yapılara dönüşürler. Daha sonra çekirdekler de uygun koşullarda gelişerek yeni bitkileri meydana getirirler. Ayrıca dişi kozalakların çok şaşırtıcı bir özellikleri daha vardır: Yumurtanın oluştuğu kısım (ovül) kozalağın merkezine çok yakındır. Bu da polenin bu bölüme ulaşması için bir zorluk gibi görünmektedir. Çünkü kozalağın iç kısımlarına ulaşabilmek için, iç eksene açılan özel bir yoldan da geçilmesi gerekmektedir. Bu ilk bakışta kozalakların döllenmesinde bir dezavantaj gibi görülmesine rağmen, yapılan incelemeler sonucunda böyle olmadığı anlaşılmıştır..7
Kozalaklardaki bu özel döllenme sisteminin nasıl işlediğinin bulunabilmesi için bir model kozalak hazırlanarak deney yapılmıştır. Helyum doldurularak yapılmış baloncuklar hava akımına bırakılarak hareketleri gözlenmiştir. Bu baloncukların hava akımını rahatlıkla izleyerek, kozalağın içindeki sıkışık koridorlardan hiç zorlanmadan geçme özelliğine sahip oldukları anlaşılmıştır.
Daha sonra bu maket deneyinde gözlemlenen baloncukların hareketleri özel bir fotoğraflama tekniğiyle görüntülenmiştir. Bir bilgisayar yardımıyla görüntüler analiz edilerek rüzgarın yönü ve hızı da tespit edilmiştir. 
Bilgisayardan elde edilen sonuçlara göre, kozalakların rüzgarın doğrusal hareketini üç şekilde değiştirdiği anlaşılmıştır. İlk olarak rüzgarın yönü dallar ve yapraklar vasıtasıyla merkeze doğru döndürülmüştür. Daha sonra bu bölgedeki rüzgar kıvrılarak yumurtanın oluşturulduğu bölgeye doğru sürüklenmiştir. İkinci harekette, kabukçukların tümünü yalayan rüzgar sanki bir girdaptaymış gibi dönerek kozalağın iç eksenine doğru açılan bölgeye yönelmiştir. Üçüncüsünde ise kozalak, çıkıntıları sayesinde çalkantıya neden olarak, rüzgarı aşağıya doğru döndürerek kabuklara yönlendirmiştir. 
İşte bu hareketler sayesinde havada uçuşan polenler çoğunlukla hedeflerine ulaşmaktadırlar. Burada dikkat edilmesi gereken nokta hiç kuşkusuz ki, birbirini tamamlayan üç aşamanın olması ve bunların mutlaka bir arada olması gerektiğidir. Kozalaklardaki tasarımın mükemmeliği işte bu noktada ortaya çıkmaktadır. 
Evrim teorisi tüm canlılarda olduğu gibi bitkilerde de aşamalı olarak, zaman içinde bir gelişim olduğunu iddia eder. Bitkilerdeki kusursuz yapıların sebebi evrimcilere göre tesadüflerdir. Bu iddianın geçersizliğini görmek için sadece kozalaklardaki üreme sisteminin sahip olduğu kusursuz yapıyı incelemek yeterli olacaktır. 
Üreme sistemi olmadan bir canlının neslini devam ettirmesi mümkün değildir. Bu kaçınılmaz gerçek elbette ki çam ağacı ve kozalakları için de geçerlidir. Yani, kozalaklardaki üreme sisteminin çam ağaçlarının ilk ortaya çıkışı ile birlikte var olması zorunludur. Kozalaklardaki bu mükemmel yapının var oluşunda ise kendiliğinden kademeli oluşma gibi bir süreç imkansızdır. Çünkü rüzgarı kozalağa yönlendiren yapının, daha sonra bu rüzgarı kanala yönelten ayrı bir yapının ve en sonunda da yumurtanın olduğu bölüme ulaştıran kanalın her birinin eksiksizce aynı anda ortaya çıkmış olmaları gerekmektedir. Bu üç yapıdan birinin eksikliği durumunda, bu üreme sisteminin çalışması mümkün değildir. Kaldı ki kozalaktaki yumurta hücresinin ve onu dölleyecek olan sperm hücrelerinin kendiliklerinden tesadüfen oluşabilmelerinin imkansızlığı da evrim teorisi açısından apayrı bir çıkmazdır.
Tek bir parçasının dahi tesadüflerle var olması imkansız olan böyle bir sistemin tüm parçalarının aynı anda tesadüflerle ortaya çıkması, imkansız kavramının dahi ötesinde bir durumdur. Bu durum da evrim teorisinin tesadüfen oluşum iddialarını her yönüyle geçersiz kılmaktadır. Dolayısıyla, şu çok açık bir gerçektir ki, kozalaklar ilk ortaya çıktıkları andan itibaren, eksiksiz bir şekilde bu kusursuz sistemle birlikte Allah tarafından yaratılmışlardır.
Çam ağaçlarının, polenlerin yakalanmasını hızlandıran daha başka özellikleri de vardır. Örneğin yumurta hücreleri genellikle dalların ucunda oluşur. Bu da polenlerin kaybını en aza indirir. 
Bundan başka çam kozalağının etrafındaki yapraklar, hava akımının hızını azaltarak kozalak üzerine daha fazla polen düşmesine yardım ederler. Kozalak etrafındaki yaprakların simetrik dizilişi de, herhangi bir yönden gelen polenlerin kolaylıkla tutulmasına yardımcı olur. 
Tüm polenlerde olduğu gibi çam polenlerinin de türlere göre farklı biçimleri, büyüklükleri ve yoğunlukları vardır. Bu sayede her polen hava akımından değişik yönde etkilenmiş olur. Örneğin, bir türün polenleri, başka bir türün kozalağının oluşturduğu hava akımlarını izleyemeyecek bir yoğunluğa sahiptir. Bu sebeple kozalağın oluşturduğu akımın dışına çıkarak toprağa düşerler. Bütün kozalak çeşitleri kendi türlerinin polenlerine en uygun hava akımını oluştururlar. Kozalakların bu özelliği sadece polenleri tutmaya yaramaz. Hava akımının meydana getirdiği bu filtre özelliğini bitkiler çok değişik işler için de kullanırlar. Örneğin bu yöntem sayesinde dişi kozalaklar, yumurta hücrelerine zarar verebilecek mantar polenlerinin yönünü de değiştirebilirler. 
Bitkiler tarafından havaya rastgele atılan polenlerin kendi türdeşlerine ulaşabilmesi için alınan önlemler sadece bunlarla sınırlı değildir. Bitkinin polenlerinin ihtiyaçtan çok daha fazla miktarda üretilmesi de, polenleşme işlemini bir yere kadar güvence altına almış olur. Çeşitli sebeplerle oluşabilecek polen kayıpları bu sayede bitkiyi etkilemeyecektir. Örneğin çam ağaçlarındaki her bir erkek kozalak yılda 5 milyondan fazla polen üretirken, tek başına bir çam ağacı ise yılda 12.5 milyar civarında polen üretmektedir ki bu, diğer canlıların üreme hücreleriyle karşılaştırıldığında son derece olağanüstü bir sayıdır.8 
Bununla birlikte rüzgarla taşınan polenlerin önünde daha pek çok engel vardır. Bunlardan biri de yapraklardır. Polenler havada uçuşmaya başladıkları sırada, yapraklara takılıp kalmalarını engellemek için bazı bitkilerde (fındık, gürgen, ceviz vs) çiçekler yapraklardan önce açarlar. Bu sebeple polenleşme yaprakların henüz gelişmedikleri bir zamanda gerçekleşmiş olur. Buğdaygillerde ve çamgillerde ise polenleşmenin kolaylıkla gerçekleşebilmesi için çiçekler bitkinin uç kısımlarında bulunmaktadır. Böylelikle yapraklar polenin hareketine bir engel teşkil etmemiş olurlar.
Alınan bu önlemlerle polenler oldukça uzak mesafelere kadar gidebilirler. Bu uzaklık bitkinin türüne göre değişir. Örneğin üzerlerinde hava kesecikleri bulunan polenlerin katedebildikleri mesafe, diğer türlere göre çok daha fazla olabilir. 2 tane hava keseciği taşıyan çam polenlerinin yüksek hava akımları ile 300 km kadar uzağa taşınabildiği belirlenmiştir.9 Bununla birlikte asıl önemli olan nokta, havada uçan binlerce çeşit polenin bazen kilometrelerle ifade edilen bir uzaklığa, aynı rüzgarlarla taşınması ve bir karışıklık çıkmamasıdır. 



Polenler Hedefe Kilitleniyor
Rüzgar yoluyla döllenen bitkilerin bu hayret uyandırıcı özelliklerini daha iyi anlayabilmek için, şöyle bir örnekle kıyas yapabiliriz:
Roketlerin hedeflerine varabilmeleri için belirli bir rotayı izlemeleri gerekir. Bu yüzden de roketin her türlü tasarımı, hedefe ulaşmasını sağlayacak şekilde titiz hesaplamalarla yapılmalıdır. Roketin özellikleri, motor kapasitesi, uçuş hızı gibi roket ile ilgili ve yağış, rüzgar, yoğunluk gibi hava şartlarıyla ilgili konular detaylı olarak programlanmalıdır. Ayrıca hedef bölgenin yapısı ve ortam şartları da en ince ayrıntısına kadar bilinmelidir. Üstelik bu saptamaların hassas ölçümlerle yapılması gereklidir. Aksi takdirde roket, rotasının dışına çıkar ve hedefe ulaşamaz. Hedefe kilitlenen bir roketin görevini başarıyla tamamlayabilmesi için birçok mühendis çok detaylı düşünerek hareket etmelidir. Belli ki hedefe kilitlenmedeki başarı, ekibin yoğun çalışmalarının, ince hesaplamaların ve kullanılan üstün teknolojinin bir ürünü olacaktır. 
Kozalaklardaki kusursuz üreme sistemlerinde de, roketlerin hedefe kilitlenmelerine benzer biçimde, her şey çok ince planlamış, son derece hassas ayarlamalar yapılmıştır. Hava akımının yönü, kozalakların yoğunluk farkları, yaprakların biçimi gibi pek çok detay, özel olarak tasarlanmış ve bitkilerin üreme planı bu bilgilere göre kurulmuştur. 
Bitkilerdeki bu detaylı yapıların varlığı, akla yine bu mekanizmaların nasıl oluştuğu sorusunu getirecektir. Bu soruya yine bir soruyla cevap verelim. Kozalaklardaki bu yapı tesadüflerin eseri olabilir mi? 
Roketlerdeki sistem uzun yıllar süren çalışmalar sonucunda, akıl ve bilgi sahibi, bu konuda uzmanlaşmış mühendislerin yoğun çalışmalarıyla ortaya çıkmıştır. Bu konuda kimsenin bir şüphesi yoktur. Roketlerle hemen hemen aynı çalışma sistemine sahip olan kozalaklardaki kompleks yapılar da aynı şekilde özel olarak tasarlanmıştır. Bir roketin tesadüfen oluştuğunu iddia etmek, rasgele bir rota tutturduğunu söylemek ne derece mantıksız bir iddia olacaksa, benzer şekilde hedefe kilitlenmiş olarak hareket eden polenlerin olağanüstü hareketlerinin ve kozalaklardaki detaylı yapının da tesadüflerle ortaya çıkmış olduğunu söylemek aynı derecede mantıksız bir iddia olacaktır.
Aynı şekilde polenlerin bu yolculukta ayrı yollarını bulabilecek yeteneğe ve bilgiye sahip olma ihtimalleri de elbetteki imkansızdır. Sonuç olarak polen bir hücreler topluluğudur. Daha da derinine inersek şuursuz atomlardan oluşan bir varlıktır. Polende böyle bir yeteneği ortaya çıkaracak bir şuur aramak mümkün değildir. Kuşkusuz bir kozalağın böylesine detaylı bilgilerle dolu bir sistemi kullanarak döllenebilmesi ancak sonsuz bilgi ve kudret sahibi olan Allah`ın mükemmel yaratması ile gerçekleşmektedir.
Çam ağaçlarının döllenmesindeki başka bir önemli nokta da, rüzgarların kontrol altında tutuluyor olmasıdır. Rüzgarların kendilerine verilen taşıma görevini kusursuz bir şekilde yerine getirmeleri de hiç kuşkusuz ki yine Alemlerin Rabbi olan Allah`ın, gökten yere her işi evirip çevirmesi sayesindedir. Allah bu durumu bir ayetinde şu şekilde bildirir:
Ve aşılayıcılar olarak rüzgarları gönderdik... (Hicr Suresi, 22) 
Yeryüzündeki tüm bitki türleri istisnasız olarak bu işlemleri gerçekleştirmektedirler. Her bir tür kendi yapması gerekenleri, ilk ortaya çıktığı andan itibaren bilmektedir. Rüzgar akımının yardımı ile gerçekleşen bu olay, başarıya ulaşması oldukça zor ihtimallere dayanmasına rağmen milyonlarca yıldır hiçbir aksama olmadan devam etmektedir. Görüldüğü gibi her şey çok yerli yerinde ve mükemmel bir zamanlama ile gerçekleşmektedir. Çünkü bu mekanizmaların her biri, bir bütün olarak ve aynı zaman dilimi içinde bir arada işlemek zorundadır. Bir tanesinin eksikliği veya işlememesi durumunda bitkinin soyunun tükenmesi kaçınılmazdır.
Ne bir parçasında ne de bütününde kendilerinden kaynaklanan bir akıl, irade ya da bilinç bulunmayan bu sistemler, çok açıktır ki hepsini her an kontrolü altında tutan, her şeyi en ince ayrıntısıyla planlayan, sonsuz bir güç ve bilgi sahibi olan Allah`ın emri ve yaratması ile bu inanılmaz olaylarda rol oynamaktadırlar. Canlı cansız her şeyin ve her olayın meydana gelmesi Allah`ın her an yaratması ile gerçekleşmektedir. Allah bu sırrı bir ayetinde insanlara şöyle bildirmektedir:
Allah, yedi göğü ve yerden de onların benzerini yarattı. Emir, bunların arasında durmadan iner; sizin gerçekten Allah`ın her şeye güç yetirdiğini ve gerçekten Allah`ın ilmiyle her şeyi kuşattığını bilmeniz, öğrenmeniz için. (Talak Suresi, 12)
Konuyla ilgili şöyle bir örnek daha verebiliriz: Her ayrıntının düşünülerek hazırlandığı, hatasız çalışan bir teknolojik alet, bir fabrika veya bir bina gördüğümüzde bunların planlayıcılarının olduğundan hiç kuşku duymayız. Tüm bunların bilinçli kişiler tarafından yapıldığını ve her aşamasında mutlaka bir denetim olduğunu da biliriz. Hiç kimse çıkıp da bunların kendi kendilerine zamanla oluştukları gibi bir iddiada bulunmaz. Planlayan kişinin aklını ve sanatını yaptığı işler oranında takdir ederiz, saygı duyarız, ondan övgüyle bahsederiz. 
İşte yeryüzündeki tüm canlılar da çok hassas dengelere bağlı olarak, her detayı ince ince planlanmış sistemlerle birlikte yaratılmışlardır. Bunu istisnasız başımızı çevirdiğimiz her yerde görürüz. Bütün canlılar bize kendilerini yaratan Allah`ı tanıtırlar. Hiç kuşkusuz ki burada övülmeye layık olan, tüm canlıları sahip oldukları yeteneklerle yaratan Allah`tır. Yeryüzündeki her şey gibi tüm bitkiler de Allah`ın özel olarak yarattığı sistemler sayesinde varlıklarını sürdürmektedirler, yani O`nun kontrolündedirler:
Göklerde ve yerde her ne varsa O`nundur. Şüphesiz Allah, hiçbir şeye ihtiyacı olmayan (Gani)dır, övülmeye layık olandır. (Hac Suresi, 64)
Gaybın anahtarları O`nun katındadır, O`ndan başka hiç kimse gaybı bilmez. Karada ve denizde olanların tümünü O bilir, O, bilmeksizin bir yaprak dahi düşmez; yerin karanlıklarındaki bir tane, yaş ve kuru dışta olmamak üzere hepsi (ve her şey) apaçık bir kitaptadır. (Enam Suresi, 59)



Polen Taşıyıcıları İş Başında 
Bazı bitki türlerinin, polenlerini böcekler, kuşlar, arılar ve kelebekler gibi hayvanlara taşıtarak ürediklerinden bahsetmiştik. 
Polenlerini hayvanlara dağıttıran bitkilerle bu dağıtımda görev alan hayvanların aralarındaki ilişkiler gözlemcileri hayrete düşürmektedir. Çünkü bu canlılar karşılıklı bir alış-verişi gerçekleştirmek için, birbirlerini etkileyecek ve cezbedecek yöntemleri ustaca kullanırlar. Önceleri, genel bir kanaat olarak bitkilerin hayvanlarla olan ilişkilerde fazla rollerinin olmadığı zannedilirdi. Oysa araştırmalar bu kanaatin tam tersi bir sonucu ortaya koydu: Bitkiler hayvanlardaki tavır ve davranışları doğrudan etkilemektedirler. 
Örneğin bitkilerdeki renk sinyalleri kuşlara ve diğer hayvanlara hangi meyvelerin olgunlaşıp yayılmaya hazır olduğunu haber verir. Çiçeklerin rengi ile bağlantılı olan nektar miktarları da, dölleyicinin çiçek üzerinde daha uzun kalmasını sağlayarak döllenme şansını artırır. Özel çiçek kokuları da doğru dölleyicileri tam gerekli zamanda çeker. Bitkiler hayvanları etkilemede çok aktif bir rol oynarlar. Kullandıkları özel stratejilerle polenlerini taşıyacak hayvanları mükemmel bir şekilde yönlendirirler.10
Bunlardan başka bitkiler amaçlarına ulaşabilmek için kimi zaman da yanıltıcı yöntemler kullanırlar. Tozlaşmayı sağlayacak olan hayvan genellikle bitkinin kurmuş olduğu tuzağa düşer ve böylelikle bitki hedefine ulaşır. 



Bitkilerin Kullandıkları Yöntemler Renk, Şekil Ve Koku Iletişimi
Polen taşıyıcısı hayvanlar için renkler, çiçeklerin ne kadar uzakta olduğunu belli etmekle beraber, çiçekte nektar olup olmadığını da haber verirler. Dölleyici böcekler yakınlara geldiğinde çiçekte koku ve şekil gibi uyarıcı sinyaller belirir ve böceğe nektar bölgesine kadar yol gösterir. Çiçeklerdeki renk çeşitliliği dölleyiciyi, nektarın olduğu merkeze yöneltir ve döllenmeyi sağlar.11 
Bitkiler de sahip oldukları bu renklerin rehberliğinden haberdardırlar. Hatta bu özelliği son derece şuurlu bir şekilde kullanarak hayvanları aldatırlar. Bazı bitkiler, böcekleri kendilerine çekebilecek nektarları olmadığı halde nektar taşıyan çiçeklerin renk özelliklerine sahiptirler. Akdeniz ikliminde bulunan ormanlık bölgelerde bir arada yaşayan Mor Çan çiçekleri ile bir orkide türü olan Kırmızı Sefalanda bitkisi bu konuya güzel bir örnek oluşturur. Mor Çan çiçekleri arılar için cezbedici bir nektar salgılarken, Kırmızı Sefalanda bu işlemi yapacak özelliklere sahip değildir. Her bakımdan birbirinden farklı olan bu iki bitkinin döllenmesini sağlayanlar ise yöresel adı "yaprak kesen" olan yaban arılarıdır. Yaprak kesen arılar, Çan çiçeğinin döllenmesini sağlarken Kırmızı Sefalandayı da dölleme ihtiyacı duyarlar. Nektarı olmadığı halde bir bitkiyi dölleyen arılar bilimadamlarının ilgisini çekmiş ve bunun nedenini araştırmışlardır.12
Bu sorunun yanıtı "spektrofotometre" olarak adlandırılan bir alet ile yapılan araştırmalar sonucunda ortaya çıkmıştır. Buna göre çiçeklerin saçtığı ışınların dalga boylarını, yaprak kesen arıların seçemediği anlaşılmıştır. Yani insanlar Mor Çan çiçeği ile Kırmızı Sefalanda`nın saçtığı ışınların dalga boylarını ayırt edip, çiçekleri ayrı renklerde görebildikleri halde, yaban arıları bunu fark edemezler. Renk, polen yayıcılar için önemli bir faktör olduğundan nektar salgılayan Çan çiçeğine giden arı, onun yanında bulunan ve aynı renkte gördüğü ancak nektarı olmayan Kırmızı Sefalanda orkidesini de ziyaret ederek döllenmeyi sağlar. Görüldüğü gibi bu orkide, Çan çiçeği ile olan "gizli benzerliği" sayesinde neslini devam ettirebilmektedir. 
Bazı bitki türleriyse çiçeklerinin rengini değiştirerek polen durumları hakkında böcekleri adeta haberdar ederler. Bu konuyla ilgili şöyle bir örnek verebiliriz:
Doğa bilimci Fritz Müller bir mektubunda Brezilya ormanlarında yetişen Lantana adlı bir bitkiden bahsediyordu:
Üç gündür renk değiştiren bir Lantana çiçeği var burada. İlk gün sarıydı, ikinci gün turuncu ve üçüncü gün mor. Çeşitli kelebekler bu çiçeği ziyaret etti. Görebildiğim kadarıyla mor çiçeklere hiç dokunulmadı. Bazı böcekler hortumlarını hem sarı hem de turuncu çiçeklere soktular, diğerleri birinci gün sarıya. Ben bunun ilginç bir durum olduğunu düşünüyorum. Eğer çiçekteki nektar ilk günün sonunda azalırsa çiçek çok daha az fark edilir duruma gelir; eğer rengi değişmezse kelebekler hortumlarını daha önce döllenmiş olan çiçeklere sokarak vakit kaybedeceklerdi.13
Müllerin de gözlemlediği gibi çiçeğin renginin değişmesi hem bitkinin hem de dölleyicinin yararınadır. Çiçeklerinin rengi değişen bitkiler, çiçekleri genç olduğunda dölleyicilere bol miktarda nektar ikram ederler. Çiçekler yaşlandıkça yalnızca renklerini değiştirmekle kalmaz, ayrıca daha az nektar barındırırlar. Böylece dölleyiciler nektarı olmayan veya az miktarda nektarı olan, bu yüzden de rengi değişen meyvesiz bitkilere gitmeyerek enerji tasarrufu sağlamış olurlar. 
Bitki tarafından bir böceği veya kuşu cezbetmek amacı ile kullanılan yöntemlerden bir diğeri de çiçeklerin yaydıkları kokulardır. Bizim sadece hoşumuza giden çiçek kokuları, aslında böcekleri cezbetmek için salgılanır. Çiçeğin yaydığı koku da etraftaki böcekler için yol gösterici rehber özelliğine sahiptir. Kokuyu alan böcek, bu kokunun kaynağında kendisi için lezzetli bir nektarın birikmiş olduğunu fark eder. Karşılıklı gerçekleşen bu haberleşme ile böcek, duyduğu kokunun kaynağına doğru yol alır. Böcek çiçeğe ulaştığında nektarı almak için uğraşacak ve polenler üzerine yapışacaktır. Aynı böcek, uğradığı başka bir çiçeğe daha önce yapışan polenleri bırakacak ve bu sayede bitkinin döllenmesi gerçekleşmiş olacaktır. Böceğin, yaptığı bu önemli işten haberi bile yoktur. O yalnızca kokusunu aldığı nektara ulaşmak amacındadır. 



Bitkilerin Yanıltıcı Yöntemleri
Bazı bitkilerin yanıltıcı yöntemler kullandıklarından bahsetmiştik. Bu bitki türleri böcekleri cezbedecek nektara sahip değildirler. Bu tür bitkiler böceklere olan benzerliklerden faydalanarak döllenirler. Bir orkide türü (mirror orchid) arıları etkileyebilmek için dişi bir arının şekline ve rengine sahiptir. Hatta bu orkide türü erkek arıları daha kolay cezbedebilmek için uygun bir kimyasal uyarı yayıp, etkileyici bir feromon (özel bir salgı) bile üretebilmektedir. 
Kıbrıs Arı Orkidesi (Cyprus bee orchid) de döllenme işleminin gerçekleşmesi için arı taklidi yapan çiçeklerden başka bir tanesidir. Bu yöntemi kullanan orkidelerin sayısı oldukça fazladır ve izledikleri yöntemler de birbirlerinden farklıdır. Kimisi başı yukarı kalkık dişi bir arının taklidini yaparken, kimisinin de başı aşağı doğru eğiktir. Örneğin Sarı Arı Orkidesi ikinci yöntemi kullanır. Bunun nedeni döllenme şekillerindeki farklılıklardır.14 
Dişi arı taklidi yapan bir diğer orkide türü de Korsan Arı Orkidesi`dir. Bu orkideler dişi arıların dış görünüşlerini o kadar mükemmel taklit ederler ki sadece erkek arılar bu orkidelerle ilgilenir. Dişi arılar bu orkidelerle hiç ilgilenmezler. Orkide familyasının bazı üyeleri ise arılara verecek nektarları olmasa da arıları kendilerine çekmeyi başarırlar. Yine dişi arı taklidi yapıp çekici bir koku salgılayarak erkek yaban arısının çiçeğin alt bölümünde yer alan kısmına konmasını sağlarlar. Çiçeğe konan yaban arısı çiftleşmeye çalışır ve sonuçta da çiçeğin üzerindeki polenleri vücuduna bulaştırır. Bu kandırmaca sonucunda da vücuduna yapışan polenleri aynı amaçla konduğu bir başka orkide çiçeğine taşır.15
Hayvanların dişilik özelliğini taklit eden bir başka bitki de Çekiç Orkidesidir. Güney Afrikanın kuru otlaklarında yetişen bu orkidenin üreme mekanizması hayret uyandıracak kadar ilginçtir. Kalp şeklinde tek bir yaprağa sahip olan Çekiç Orkideleri tıpatıp yaban arısı dişisine benzerlik gösterirler. Bu yaban arılarının sadece erkekleri uçarken, dişileri kanatsız olup zamanlarının büyük bir kısmını toprağın altında geçirirler. Dişi yaban arıları çiftleşme zamanı geldiği zaman, erkek arıların onlara kolay ulaşması için toprağın altından çıkarak Çekiç Orkidesine tırmanırlar. Orkideye çıktıklarında çiftleşmek için bir koku salgılarlar ve erkek arının gelmesini beklerler. 
Erkek yaban arılarının özelliğiyse orkidelere dişi arılardan iki hafta önce zaten gelmiş olmalarıdır. Bu son derece ilginç bir durumdur. Çünkü ortada dişi yaban arıları yoktur ama dişi yaban arılarına tıpatıp benzeyen ve döllenmeyi bekleyen orkideler vardır. Ve erkek yaban arıları orkideye geldiklerinde, dişi arıların yaydığı kokunun benzeri ile karşılaşırlar. Çünkü orkide, dişi arıların kokusuna benzer bir koku yaymaktadır. Bu kokunun da etkisi ile birlikte erkek arılar orkidenin yaprağına konarlar. Orkide, yaprağının bir bölümünü hareket ettirerek arının kendi üreme organına düşmesini sağlar. Arı çiçekten kurtulmaya çalışırken bu sırada polen yüklü iki kesecik kafasının arkasına ve sırtına yapışır. Böylece arı başka orkidelere gittiğinde, sırtına yapışan polenler diğer orkidelerin döllenmesini sağlar.16 Görüldüğü gibi Çekiç Orkidesi ve arı arasında son derece uyumlu bir ilişki söz konusudur. Bu uyum bitkilerin üreyebilmesi için son derece önemlidir. Çünkü başarılı bir polenleşmenin sağlanamaması, yani böcekten gelen polenlerin aynı türde bitkiye iletilmemesi durumunda döllenme gerçekleşmeyecektir.
Çekiç Orkidesi ve yaban arıları arasındaki bu uyumun doğada pek çok örneği vardır. Çiçeklerin yapılarındaki farklılıklar bazen bu uyumlu ilişkinin sebebi olabilmektedir. Örneğin bazı çiçeklerin içine girebilmek bazı böcekler için son derece kolaydır, çünkü çiçeğin polenlerinin bulunduğu kısım açıktır, bu bölümden böcekler ve arılar kolaylıkla girip polenlere ulaşabilirler. Bazı bitkilerde ise sadece belirli hayvanların girebileceği büyüklükte bir nektar girişi vardır. Mesela arılar bazı durumlarda çiçekteki nektara ulaşmak için bu aralıklardan kendilerini içeri doğru iterler. Oysa arıların kolaylıkla yaptıkları bu işlemi yapmak başka canlılar için çok zor, hatta imkansızdır.
Normal çiçeklerden daha uzun çiçek tacı tüplerine sahip olan bitkilerdeyse ağız yapıları sebebiyle arılar ve bazı böcekler bu bitkileri dölleyemezler. Sadece gece kelebekleri ve güveler gibi uzun dilleri olan böcekler, uzun çiçek tacı tüplerine sahip olan bu çiçekleri dölleyebilirler.17 
Bütün örneklerde de görüldüğü gibi bazı çiçeklerin yapılarına tıpatıp uygun bir vücut yapısına sahip olan böceklerle bu çiçekler arasında son derece kusursuz bir uyum vardır.
Bir kilit ve anahtar ilişkisi şeklinde olan bu uyumun evrimcilerin iddia ettikleri gibi tesadüflerle elde edilmesi imkansızdır. Kaldı ki bu uyumun tesadüflerle meydana gelmesini beklemek yine evrimcilerin savunduğu doğal seleksiyon mantığıyla çelişir. Çünkü evrimcilerin doğal seleksiyon iddialarına göre, çevreye adapte olamayan bir canlı ya kendisinde yeni mekanizmalar oluşturmalı ya da yavaş yavaş yok olmalıdır. Bu durumda doğal seleksiyon mekanizmasına göre bu bitkiler özel çiçek yapıları nedeniyle taşıyıcı böcekler tarafından döllenemeyecekleri için yok olacaklardır veya çiçeklerinin şeklini değiştirmek zorunda kalacaklardır. Yine aynı şekilde ağız yapıları sebebiyle sadece bu çiçekleri dölleyebilen böcekler de, ya besin bulamadıkları için yok olacaklardı ya da besin toplamakta kullandıkları organlarının yapısını değiştireceklerdi.
Oysa uzun çiçek tacı olan bitkilere ya da diğer bitkilere baktığımızda herhangi bir adaptasyonun, yani değişikliğin ya da başka bir ek mekanizmanın oluşmadığını görürüz. Aynı şekilde kelebekler ve güveler gibi canlılarda herhangi bir adaptasyon görülmemektedir.
Bu çiçekler de, onları dölleyen taşıyıcılar da çok uzun yıllardan bu yana yaşamlarını aynı uyum içerisinde sürdürmektedirler. 
Buraya kadar anlatılanlar, birkaç ayrı türdeki bitkinin nesillerini sürdürebilmeleri için başvurdukları yöntemlerin kısa birer özeti idi. Herhangi bir biyoloji kitabında tüm detaylarını bulacağınız bitkilerin tozlaşması işleminin sebepleri hakkında aynı kaynaklar doyurucu bir açıklama getiremezler. Çünkü yapılan her işlemde, bitkiye mal edemeyeceğimiz düşünme, akletme, karar verme, hesap etme gibi özellikler ön plandadır. Oysa bir bitkinin bu fiilleri gerçekleştirecek bir şuurunun olmadığını hepimiz biliriz. Eğer bitkinin tüm bu işlemleri kendi iradesiyle yaptığını söylersek bakın nasıl bir senaryo çıkar karşımıza:
Bitki, aerodinamik yapısının rüzgar ile tozlaşmaya uygun olduğunu "hesap eder" ve ondan sonra gelen her nesil aynı yöntemi kullanır. Diğerleri ise rüzgardan yeterince faydalanamayacaklarını "anlar" ve bu nedenle tozlaşma için böcekleri kullanırlar. Çoğalabilmek için böcekleri kendilerine çekmeleri gerektiğini "bilir", bunu sağlamak için çeşitli yöntemler denerler. Öncelikle böceklerin nelerden hoşlandığını tespit ederler. Bu tespiti yapabilmeleri için böcekleri gözlemlemeleri, çeşitli araştırmalar yapmaları gerekmektedir. Hangi nektarın ve kokunun hangi böcek üzerinde etkili olduğunu bulduktan sonra çeşitli kimyasal işlemler yaparak kokular üretirler ve bunu tam gerektiği zamanı belirleyerek salgılarlar. Nektarı böcekler için cazip kılan tadın, içindeki maddelerin miktarını tesbit eder ve bunu da kendileri üretirler. Nektar ve koku böcekleri kendilerine çekmede yeterli olmuyorsa düşünüp başka bir yöntem denemeye karar verir ve böyle durumlarda "aldatıcı taklitler" yaparlar. Dahası kendi türlerinden başka bir bitkiye ulaşacak olan polenlerin boyutlarını ve gideceği mesafeyi "hesap eder" ve buna göre en uygun şekilde ve en uygun zamanda polenlerini üretirler. Polenlerin yerine ulaşmasını engelleyebilecek ihtimalleri "düşünür" ve bunlara karşı "önlemler alırlar." 
Elbette böyle bir senaryonun gerçekleşmesi mümkün değildir, hatta bu senaryo tamamen mantık kurallarına aykırıdır. Bütün bunlar sıradan bir bitki tarafından gerçekleştirilemez. Çünkü bir bitki akledemez, zaman ayarı yapamaz, ebat ve şekil tesbit edemez, rüzgarın hızını ve yönünü hesaplayamaz, döllenebilmek için ne tip yöntemlere ihtiyacı olduğunu kendisi belirleyemez, hiç tanımadığı bir hayvanı cezbetmesi gerektiğini düşünemez, üstelik bunu sağlamak için nasıl yöntemler kullanacağına karar veremez. 
Bu detaylar ne kadar çoğaltılırsa çoğaltılsın, hangi yönden yaklaşılırsa yaklaşılsın, ne gibi mantıklar kurulursa kurulsun bitkilerle hayvanlar arasındaki bu ilişkide bir olağanüstülük olduğu sonucu değişmeyecektir.
Çünkü bu canlılar birbirleri ile uyumlu yaratılmışlardır. Bu kusursuz uyum bize hem çiçekleri hem de böcekleri yaratan gücün her iki canlıyı da çok iyi tanıdığını, onların her türlü ihtiyacından haberdar olduğunu ve onları birbirlerine uygun yarattığını gösterir. Her iki canlı da kendilerini çok iyi tanıyan, bilen Alemlerin Rabbi olan, her şeyden haberdar olan Allah`ın eseridirler. Onlar Allah`ın büyüklüğünü, yüce kudretini, kusursuz sanatını insanlara gösterip tanıtmakla görevlidirler.
Bitkinin ne kendi varlığından, ne de gerçekleştirdiği bu mucizevi işlemlerden haberi bile yoktur. Çünkü o, sahip olduğu her özelliği planlayan, kainattaki her şey gibi kendisini de yaratmış olan ve her an yaratmaya devam eden Allah`ın kontrolündedir, ki bu gerçek de Kur`an`da Allah tarafından bizlere bildirilmektedir:
Bitki ve ağaç (O`na) secde etmektedirler. (Rahman Suresi, 6)

Deniz Altı Bitkilerinde Polenleşme Yöntemi ile Üreme
Polenle üreme yöntemi, bilinenin aksine, sadece kara bitkilerine özgü bir yöntem değildir. Deniz bitkilerinde de bu yöntemle üreyen türler vardır. İlk olarak 1787 yılında İtalyan botanikçi Filippo Cavollini, açık denizde yaşayan ve polenleşme yöntemi ile üreyen "Zostera" isimli bitkiyi keşfetmiştir.20 
Polenleşme yönteminin sadece kara bitkilerine özgü olduğunun zannedilmesinin nedeni; su ile temas eden kara bitkilerinin polenlerinin, yarılarak işe yaramaz hale gelmeleriydi. 
Suda polenleşme yöntemiyle üreyen bitkiler üzerinde yapılan incelemeler, bu konunun evrim teorisinin içinden çıkamadığı problemlerden bir yenisi olduğunu göstermiştir. 
Polenleri suyla taşınan bitkilere 11 farklı familyada 31 cins olarak Kuzey İsveç`ten, Güney Arjantin`e, deniz seviyesinin 40 m altından, 4800 m yüksekte And Dağlarındaki Titicaca Gölü`ne kadar pek çok farklı yerde rastlanılır. Ekolojik yönden bakılacak olursa tropik yağmur ormanlarından, çöllerdeki mevsimlik göllere kadar çok farklı şartlarda yaşayanları vardır.21
Evrimcilerin bu konudaki problemleri, Evrim Teorisi`nin kendi tezlerinden kaynaklanır. Çünkü teoriye göre polenleşme, bitkilerin karada yaşamaya başlamasından sonra kullandıkları "gelişmiş" bir üreme biçimidir. Oysa, bu yöntemi kullanan su bitkilerinin varlığı ortadadır. Bu nedenle evrimciler bu bitkileri, "yeniden suya dönen çiçekli bitkiler" olarak adlandırmışlardır. Ne var ki evrimciler bu bitkilerin ne suya dönüş zamanları, ne suya dönüşlerini gerektiren nedenler, ne de suya dönüşlerinin şekli ve ara formları hakkında mantıklı ve bilimsel bir açıklama yapamamışlardır. 
Evrimcilerin diğer bir problemi ise suyun bazı özelliklerinden kaynaklanır. Daha önce de belirttiğimiz gibi su, polenin yayılması için hiç de etkin bir ortam değildir ve genellikle polen tanelerinin yarılmasına yol açar. Ayrıca, suyun hareketini tahmin etmek de zordur. Suda oldukça düzensiz akıntılar olabilir, gel-git olması bitkileri aniden batırabilir ya da suyun üstünde oldukça uzaklara götürebilir. Tüm bunlara karşın suda yetişen bitkiler, polenleşme taşıyıcısı olarak suyu büyük bir başarı ile kullanırlar. Çünkü bu bitkiler suda bu işlemleri rahatlıkla başaracakları şekilde yaratılmışlardır. İşte bu bitkilerden birkaç örnek:




Vallisneria
Erkek Vallisneria`nın çiçekleri, bitkinin su içinde kalan bölümünde oluşur. Bunlar daha sonra dişi özellikli bitkinin çiçeklerine ulaşabilmesi için, gövdeden ayrılarak serbest kalırlar. Çiçek, serbest kaldığında kolaylıkla su yüzeyine çıkabilecek bir biçimde yaratılmıştır. Bu esnada çiçek küresel bir tomurcuk görünümündedir. Taç yaprakları birbirleri üzerine kapanmıştır ve portakal kabuğu gibi çiçeğin etrafını sarmışlardır. Bu özel yapılı form, polenlerin taşındığı bölümün, suyun olumsuz etkisinden korunmasını sağlar. Çiçekler yüzeye çıktığında, daha önce kapalı olan taç yapraklar birbirlerinden ayrılır ve geriye doğru kıvrılarak su üzerine yayılırlar. Polenleri taşıyan organlar, taç yaprakların üzerinde yükselmiş bir biçimde ortaya çıkarlar. Bunlar en hafif bir esintiyle bile hareket edebilecek yelken görevini üstlenirler. Bu organlar, bir yandan yelken gibi iş görürken, öte yandan Vallisneria`nın polenlerini de su yüzeyinden yukarıda tutarlar. 
Dişi bitkinin çiçekleri ise, su dibinden gelen uzun bir sapın ucunda ve su yüzeyinde yer alırlar. Dişi çiçeğin yaprakları da su yüzeyinde hafif bir çöküntü oluşturacak şekilde açılmışlardır. Bu çöküntü erkek çiçek kendine yaklaştığında, dişi çiçeğin bir çekim alanı oluşturmasına yarar. Nitekim erkek çiçek, dişi çiçeğin yanından geçerken bu çekim alanına girer ve iki çiçek buluşur. Böylece polenler dişi çiçeğin üreme organına ulaşır ve polenleşme gerçekleştirilmiş olur.
Erkek çiçeğin, suda iken kapalı olup polenleri koruması, yükselerek su yüzünde açması ve suda rahatlıkla ilerleyebilecek bir form oluşturması, üzerinde özel olarak düşünülmesi gereken detaylardır. Çiçeğin bu özelliği deniz taşıtlarında kullanılan ve denize atıldığında otomatik olarak açılan tahliye botlarına benzer. Bu botlar birçok endüstri ürünleri tasarımcısının uzun süren ortak çalışmaları sonucu ortaya çıkmıştır. Botun ilk üretiminde karşılaşılan planlama hataları ve dolayısıyla botun çalışması sırasında ortaya çıkan aksaklıklar tekrar tekrar ele alınmış, hatalar düzeltilmiş ve tekrarlı çalışmalar sonunda işleyen doğru bir sisteme ulaşılmıştır. 
Tüm bu çalışmaları Vallisneria`nın durumunu düşünerek göz önüne alalım: Vallisneria`nın, tahliye botunu tasarlayanlar gibi birden fazla şansı yoktur. Yeryüzündeki ilk Vallisneria`nın tek şansı vardır. Ancak ilk denemede tam anlamıyla başarılı olan bir sistemin kullanılması sonraki nesillere yaşama imkanı yaratacaktır. Aksaklıkları olan bir sistem ise dişi çiçeği polenleyemeyecek ve bu bitki hiçbir zaman çoğalamayacağı için yeryüzünden yok olup gidecekti. Görüldüğü gibi Vallisneria`nın polenleme stratejisinin aşamalı olarak ortaya çıkması imkansızdır. Bu bitki suda polenlerini gönderebileceği yapısıyla birlikte yaratılmıştır.22 



Halodule
Etkileyici polenlenme stratejisine sahip bir başka su bitkisi de Fiji Adalarının kumlu kıyılarında yetişen Halodule`dir. Bu bitkinin polen taşıyıcıları uzun yüzücü iplikler biçimindedir ve suyun içinden yüzeye salınırlar. Bu tasarım Halodule`ye Valisneria`dan bile çok daha fazla isabet sağlama imkanı verir. Ayrıca bu ipliklerin yapısında son derece özel karbonhidrat ve protein tabakaları vardır. Bu özel yapı da Halodulelerin yapışkanlık özelliği taşımalarını sağlamıştır. İplikler su yüzeyinde birbirine yapışarak uzun sallar oluştururlar. Bitkiye ait bu tip milyonlarca arama aracı, gel-git dalgalarını kullanarak dişi bitkilerin bulunduğu sığ sulara doğru yol alırlar. Bu arama araçlarının birbiriyle çarpışmasıyla döllenme işlemi kolaylıkla başarılmış olur..23 



Halodule
Etkileyici polenlenme stratejisine sahip bir başka su bitkisi de Fiji Adalarının kumlu kıyılarında yetişen Halodule`dir. Bu bitkinin polen taşıyıcıları uzun yüzücü iplikler biçimindedir ve suyun içinden yüzeye salınırlar. Bu tasarım Halodule`ye Valisneria`dan bile çok daha fazla isabet sağlama imkanı verir. Ayrıca bu ipliklerin yapısında son derece özel karbonhidrat ve protein tabakaları vardır. Bu özel yapı da Halodulelerin yapışkanlık özelliği taşımalarını sağlamıştır. İplikler su yüzeyinde birbirine yapışarak uzun sallar oluştururlar. Bitkiye ait bu tip milyonlarca arama aracı, gel-git dalgalarını kullanarak dişi bitkilerin bulunduğu sığ sulara doğru yol alırlar. Bu arama araçlarının birbiriyle çarpışmasıyla döllenme işlemi kolaylıkla başarılmış olur..23 



TOHUMLARIN KUSURSUZ DİZAYNI
Gerek rüzgarlarla, gerekse diğer taşıyıcılarla çiçeklerin dişi organlarına ulaşan erkek polenler için artık yolculuklarının sonu gelmiştir. Tohumun oluşturulması için her şey hazırdır. Eşeyli üreme olarak adlandırdığımız üreme biçiminin gerçekleşmesi için en önemli aşama tohumun oluşmasıdır. Söz konusu oluşumu, en başından çiçeğin genel yapısından başlayarak incelemekte fayda vardır. 
Çiçeklerin tam ortasında, meyve yapraklarından (karpellerden) oluşmuş tek ya da birkaç tane dişi organ bulunur. Her dişi organın en üst bölümünde bir tepecik, bunun altında tepeciği taşıyan bir boyuncuk ve en dipte de tohum taslaklarını barındıran şişkince bir yumurtalık vardır. 
Erkek organlardan gelen çiçek tozları, yüzeyi yapışkan bir sıvıyla kaplı olan tepeciğe konarlar, sonra boyuncuk kanalıyla dipteki yumurtalığa ulaşırlar. Bu yapışkan sıvının çok önemli bir görevi vardır: Çiçek tozları boyuncuğun altındaki yumurtalığa ulaşamadıkça buradaki tohum taslaklarını dölleyemezler, bu sıvı ise çiçek tozlarının boş yere harcanmasını önler ve birleşmeyi sağlar. Tohum taslağı, ancak bu dişi ve erkek üreme hücreleri birleştiğinde tohuma dönüşür. 
Çiçek tozları, tepeciğin üstüne konduktan sonra büyümeye başlar ve her çiçek tozu taneciği yani her erkek üreme hücresi, kök kadar ince bir borucuk geliştirerek, dişi organın boyuncuğundan yumurtalığa doğru uzatır. Bu borucuklardan her birinin içinde iki tane çekirdek vardır. Borucuk uzayarak yumurtalığa ulaştığında kopar ve içindeki hücre çekirdekleri serbest kalır. Böylece çekirdeklerden biri yumurtalıktaki yumurta hücresiyle birleşir. Bu oluşum ileride tohumu meydana getirecektir. Diğer çekirdek de aynı tohum taslağındaki başka bir hücreyle birleşerek tohumun çimlenmesi için gerekli besin deposunu oluşturur. İşte bu olaya döllenme denir. 
Döllenmeden sonra dayanıklı bir tabaka yumurtayı sarar ve embriyo bir tür dinlenme evresine girer, çevresinde depolanan besin maddeleriyle tohumu oluşturur.
Erkek ve dişi eşey hücrelerinin birleşmesiyle oluşan her tohumda, bir bitki embriyosu ve bir de besin deposu vardır. Bu, tohumun gelişimi için çok önemli bir detaydır çünkü toprak altında bulunduğu ilk zamanlarda, tohumun kökleri ve besin üretebilecek yaprakları yoktur ve bu süre zarfında büyüyebilmek için bir besin kaynağına ihtiyacı olacaktır.25 
Bu tohumları çevreleyen embriyo ve besin deposu gerçekte bizim meyve olarak adlandırdığımız besinlerdir. Bu yapılar, tohumu beslemek amaçlı olduğu için besin değeri yüksek olan proteinleri ve karbonhidratları içerirler. Bu haliyle hem insanlar, hem de diğer canlılar için vazgeçilmez bir besin kaynağı oluştururlar. Her meyve içerdiği tohumu en iyi şekilde koruyup besleyecek niteliklere sahiptir. Etli kısmı, su miktarı, dış zarının yapısı tohumu en etkili koruyacak şekildedir. 
Burada önemli bir detay daha vardır: Her bitki yalnız kendi türünden bir bitkiyi dölleyebilir. Eğer bir bitkinin çiçek tozları başka türden bir bitkinin tepeciğine konarsa, bitki bunu anlar ve yumurtalığa ulaşmak üzere bir borucuk uzatmaz; sonuçta döllenme olmadığından tohum gelişmez.26 
Mesela buğdayın çiçek tozları bir elma ağacının çiçeklerine taşınırsa ağaç elma vermez. Bu noktada biraz durup düşünmek, olayın olağanüstülüğünü kavramamız açısından faydalı olacaktır. Bir bitkinin çiçeği kendi türündeki bir bitkinin çiçeğinden gelen poleni tanımaktadır. Şayet kendi türünden ise döllenmeyi başlatacak işlemleri yapar. Eğer gelen polen kendi türünden bir bitkiye ait değilse, bitki döllenmeyi başlatmaz. Peki belirli kriterlere göre kendi türüne ait poleni ayırt eden "çiçek tepeciği" bu teşhisi yapmayı nasıl öğrenmiştir? Yabancı polenlere karşı mekanizmayı kilitlemesi gerektiğini nereden bilmektedir? Hiç kuşkusuz bitkinin her ayrıntısına hakim olan akıl, çiçeğindeki bu mekanizmayı da en güzel biçimde düzenlemiş ve nesillerin devamını garanti altına almıştır. 
Tohum embriyosunun ne gibi bir ortamda gelişeceği, gelişme evrelerinde nelere ihtiyacının olacağı, topraktan çıktığı zaman nelerle karşılaşacağı ve nasıl bir korunmaya gereksinim duyacağı gibi, ihtiyacı olacak her detay önceden düşünülmüş ve tohum bu ihtiyaçlara göre tasarlanmıştır. Tohumların koruyucu dış katmanları (tohum kılıfları) genellikle çok serttir. Bu yapı, tohumu karşılaşacağı dış etkenlere karşı korur ve bulunulan ortama göre değişiklikler gösterir. Örneğin bazı tohumların gelişiminin son aşamasında dış yüzeylerinde dayanıklı mumlu bir yapı birikir, bu sayede su ve gaz tesirine karşı dirençli olurlar.
Bitkilerin yaşamındaki kusursuz yapılar sadece bu kadarla sınırlı değildir. Tohum kılıfları da bitkinin türüne göre değişik malzemelerle kaplanabilir; mesela fasulye tanesinde olduğu gibi ince bir zarla ya da kiraz çekirdeğinde olduğu gibi odunsu ve sert bir kabukla örtülü olabilir. Suya dayanıklı olması gereken tohumların kabukları diğerlerine göre daha sert ve kalındır. Ayrıca her türe göre tohumlara çok farklı şekiller ve farklı büyüklükler verilmiştir. Uzun süre çimlenmeden dayanması gerekenlerin (örneğin hindistan cevizi tohumları) içindeki besin miktarı ile suyla karşılaştıktan kısa bir süre sonra filizlenmeye başlayanların (kavun, karpuz vs.) besin miktarı farklıdır.
Görüldüğü gibi tohumların bozulmadan kalmaları ve kolay üremeleri için çok ayrıntılı sistemler vardır. Bitkilerin üremeleri için gereken özel olarak tasarlanmış bu sistemlerin her kademesinde görülen akıl, bu sistemlerin üstün güç sahibi olan Allah tarafından yaratılmış olduğunun çok açık bir delilidir.

Sıra Dağıtımda:Tohumların Dağıtılması
Bitkilerin tohumlarını dağıtırken kullandıkları, her biri son derece etkili olan yöntemler, her bitkinin sahip olduğu tohum yapısına göre değişir. Örneğin çok hafif bir meltemle uçacak kadar küçük ve hafif olan tohumlar, rüzgar tarafından sallandıklarında hemen dökülürler ve zahmetsiz bir şekilde döllenirler. Bazı bitkilerin üremek için sadece tohumlarını toprağa düşürmeleri yeterlidir. Bazı bitkilerse doğal mancınık yöntemiyle , yani fırlatarak tohumlarını dağıtırlar. Bu fırlatma, tohum kabı içinde büyüme sırasında oluşan gerilimin bir şekilde boşalmasıyla sağlanır. Bazı bitkilerdeki tohum kabukları, güneşte kuruduktan sonra çatlayarak açılır, bazılarındaysa rüzgar ya da hayvan çarpması gibi dış etkenlerle açılıp, dağılırlar.




Tohumlarını Patlatarak Dağıtan Bitkiler
Akdeniz Salatalığı
Bitkilerin üremesinde son derece büyük bir önemi olan dağıtım işleminde kullanılan mekanizmalar incelendiğinde, çok hassas dengeler üzerine kurulu oldukları görülür. Örneğin Akdeniz salatalığı gibi bazı bitkiler, tohumlarının yayılması için kendi güçlerini kullanırlar. Akdeniz salatalıkları olgunlaşmaya başladıkça içleri yapışkan bir sıvıyla dolmaya başlar. Bir müddet sonra bu sıvıdan kaynaklanan basınç öylesine artar ki, buna salatalığın içindeki tohumlar dayanamaz ve patlar. Tohum patlarken, havaya fırlatılan roketin arkasında bıraktığı ize benzer bir şekilde içindeki sıvıyı da fışkırtır. Sıvıyla birlikte salatalığın tohumları da toprağa dağılmış olur.27
Buradaki mekanizma çok hassastır; kapsüle sıvının dolması salatalığın tam olgunlaşmaya başladığı dönemde, patlama da olgunlaşmanın bittiği dönemde olur. Bu sistem daha önce çalışmaya başlasa tohumlar olmadan patlayan kapsül hiçbir işe yaramayacaktır. Bu durum da bu bitki türünün sonu olacaktır. Fakat bitkide, yaratılmış mükemmel zamanlama sayesinde söz konusu tehlike oluşmaz. Her birinin en başından itibaren aynı anda var olması gereken bu mekanizmaların yüzlerce, binlerce hatta milyonlarca yıl süren bir değişimin sonucunda evrimleşerek geliştiğini iddia etmek akıl, mantık ve bilime dayanan bir iddia değildir.
Kapsül de, içindeki sıvı da, tohumlar da, tohumların olgunlaşması da her şey aynı anda ortaya çıkmalıdır. Bugüne kadar hiçbir problem olmadan işleyen böyle bir sistemin varlığı onun ilk olarak da tüm parçalarıyla birlikte, eksiksiz ve kusursuz bir biçimde ortaya çıktığını, yani tek bir Yaratıcı tarafından yaratıldığını göstermektedir.



Tohumlarını Patlatarak Dağıtan Bitkiler
Akdeniz Salatalığı
Bitkilerin üremesinde son derece büyük bir önemi olan dağıtım işleminde kullanılan mekanizmalar incelendiğinde, çok hassas dengeler üzerine kurulu oldukları görülür. Örneğin Akdeniz salatalığı gibi bazı bitkiler, tohumlarının yayılması için kendi güçlerini kullanırlar. Akdeniz salatalıkları olgunlaşmaya başladıkça içleri yapışkan bir sıvıyla dolmaya başlar. Bir müddet sonra bu sıvıdan kaynaklanan basınç öylesine artar ki, buna salatalığın içindeki tohumlar dayanamaz ve patlar. Tohum patlarken, havaya fırlatılan roketin arkasında bıraktığı ize benzer bir şekilde içindeki sıvıyı da fışkırtır. Sıvıyla birlikte salatalığın tohumları da toprağa dağılmış olur.27
Buradaki mekanizma çok hassastır; kapsüle sıvının dolması salatalığın tam olgunlaşmaya başladığı dönemde, patlama da olgunlaşmanın bittiği dönemde olur. Bu sistem daha önce çalışmaya başlasa tohumlar olmadan patlayan kapsül hiçbir işe yaramayacaktır. Bu durum da bu bitki türünün sonu olacaktır. Fakat bitkide, yaratılmış mükemmel zamanlama sayesinde söz konusu tehlike oluşmaz. Her birinin en başından itibaren aynı anda var olması gereken bu mekanizmaların yüzlerce, binlerce hatta milyonlarca yıl süren bir değişimin sonucunda evrimleşerek geliştiğini iddia etmek akıl, mantık ve bilime dayanan bir iddia değildir.
Kapsül de, içindeki sıvı da, tohumlar da, tohumların olgunlaşması da her şey aynı anda ortaya çıkmalıdır. Bugüne kadar hiçbir problem olmadan işleyen böyle bir sistemin varlığı onun ilk olarak da tüm parçalarıyla birlikte, eksiksiz ve kusursuz bir biçimde ortaya çıktığını, yani tek bir Yaratıcı tarafından yaratıldığını göstermektedir.

Çalı Bitkisi ve Hura Ağacı
Çalı bitkisinin üremesi ise yine kendi kendine açılma yöntemiyle ama Akdeniz salatalığının tam tersi bir şekilde gerçekleşir. Çalıdaki tohumların patlaması, içindeki herhangi bir sıvının yardımıyla değil, bitkide meydana gelen buharlaşma sayesinde oluşur. Çalının üzerindeki tanelerin güneşe bakan yüzü, sıcaklık arttıkça gölgede kalan yüzünden daha hızlı bir şekilde kurumaya başlar. Tane, üzerinde iki taraf arasında yaşanan basınç sonunda ortadan ikiye ayrılır böylece içerdeki küçük siyah tohumlar dört bir yana dağılır. 28
Tohumunu patlatarak yayan bitkilerin en başarılılarından birisi de Brezilya`ya özgü bir bitki olan Hura adındaki ağaçtır. Ağaç kuruyup tohumlarını yayma vakti geldiğinde, tohumlarını yaklaşık olarak 12 m uzaklığa kadar fırlatabilir. Bu mesafe bir ağaç için oldukça büyük bir uzaklıktır. 




Helikopter Tohumlar
Avrupa akçaağaçları ve çınarlarının tohumları çok ilginç bir tasarıma sahiplerdir. Bu tohumların sadece tek bir taraftan çıkan kanatları vardır. Tohum kanadının ağırlığı ile rüzgarın şiddeti o kadar mükemmel biraraya getirilmiştir ki bu tohumlar spin hareketi yaparak, yani kendi etraflarında dönerek hareket edebilirler. Akçaağaçlar yaşadıkları bölgeye seyrek olarak dağıldıkları için, döllenme işlemlerinde en büyük yardımcıları rüzgarlardır. Ufak bir rüzgar esintisinde dahi kendi etrafında dönme hareketi yapan helikopter tohumları kilometrelerce süren uzun mesafeleri aşabilirler.29 
Güney Amerikada yetişen Bertholletia ağaçlarının kapsül içindeki tohumları, orman zeminine düştükten sonra bir süre bulundukları yerde kalırlar. Bunun sebebi hayvanların ilgisini çekecek özelliklerinin olmamasıdır. Örneğin bu tohumların kokuları yoktur, dış görünüş olarak da dikkat çekici değildirler, ayrıca kırılmaları da çok zordur. Bu ağacın üreyebilmesi için de bir şekilde tohum olarak oluşturduğu kapsüllerin içindeki fındıkların çıkarılıp toprağın altına gömülmeleri gereklidir. 
Ama bütün bu olumsuz özellikler Bertholletia için hiç sorun teşkil etmez. Çünkü kendisiyle aynı ortamda yaşayan ve bu olumsuzlukları aşacak özelliklere sahip olan bir canlı vardır.
Güney Amerika`da yaşayan bir tür kemirici hayvan olan Agouti bu kalın, kokusuz kabuğun altında kendisi için bir yiyecek olduğunu bilmektedir. Agoutilerin dişleri kesici ve sivridir. Özel diş yapıları sayesinde sert kapsülü kolayca kırarlar. Tek bir kapsül içinde yaklaşık 20 civarında fındık bulunur. Bu da Agoutilerin bir seferde yiyeceğinden çok fazladır. Agouti, çenesine aldığı fındıkları taşır ve onları açtığı küçük deliklere yerleştirdikten sonra üstünü örter. Agoutiler bu işlemi daha sonra fındıkları yemek için yapmış olmalarına rağmen Allah gömdükleri fındıkların çoğunu onlara buldurmaz. Bu da Bertholletia ağacının işine yarar. Bu sayede ağacın filizlerinden pek çoğu toprağa filizlenmek üzere gömülmüş olur.30 Görüldüğü gibi Agouti`nin beslenme şekli ile Bertholletia ağaçlarının üreme şekli, birbirlerine son derece uyumludur. Bu uyum tabii ki tesadüfen ortaya çıkmış bir uyum değildir. Bu canlılar birbirlerini tesadüfen de keşfetmemişlerdir. Bu canlılar yaratılmışlardır. Doğada sayısız örnekleri olan bu uyum hiç kuşkusuz ki çok üstün bir aklın ürünüdür. Sonsuz akıl sahibi olan Allah, her iki canlıyı tüm bu özellikleriyle birlikte ve birbirine uyumlu olarak yaratmaktadır. 



Her Türlü Koşula Dayanıklı Tohumlar
Canlılardaki üreme hücreleri genelde kendi doğal ortamlarından ayrıldıktan kısa bir süre sonra ölürler. Bitkilerdeyse böyle bir şey söz konusu değildir. Bitkilerin gerek polenleri gerekse tohumları kendi ana gövdelerinden kilometrelerce uzakta dahi canlılıklarını sürdürebilirler. Ayrıca ana gövdeden ayrılmalarından itibaren geçen sürenin de bir önemi yoktur. Aradan yıllar hatta yüzyıllar geçse de bozulmadan kalabilen tohumlar vardır. 
Arktik tundralardaki "Lupin Bitkisi" bu beklemeye çok güzel bir örnektir. Bitkinin tohumları, büyümek için yılın belli zamanlarında sıcak havaya ihtiyaç duyarlar. Bu sıcaklığın yeterli olmadığını gördüklerinde bir mucize gerçekleşir, ortam diğer şartlar açısından uygun da olsa tohumlar çatlamaz ve donmuş topraklarda sıcaklığın artmasını beklerler. Uygun ortam tam olarak sağlandığında da aradan geçen zamanın uzunluğuna bakmaksızın kaldıkları yerden gelişmeye devam ederler. Öyle ki kaya yarıkları arasında yüzlerce yıl bozulmadan, çimlenmeden kalan bitki tohumları bulunmuştur. 
Bu son derece ilginç bir durumdur. Bir bitkinin dış ortamdan haberdar olması ne demektir? Bitki bunu kendisi başaramayacağına göre, ne gibi ihtimaller olabilir düşünelim. Bitkinin içinde bulunan bir mekanizma ona durumu haber veriyor olabilir. Bitki de bu haber üzerine bir yerden emir gelmiş gibi gelişimini aniden durdurur. Peki öyleyse bitkideki bu sistem nasıl ortaya çıkmıştır? Bitki bu sistemi kendisi mi düşünerek bulmuştur? Bu sistemle ilgili gereken teknik donanımı kendisinde nasıl oluşturmuştur?31
Bu sistemi tabii ki bitkinin kendisi bulmamıştır. Bitkinin tohumunda saklı duran genetik bilgisinde, bitki ilk ortaya çıktığı andan itibaren zaten bu bilgilerin hepsi vardır. Lupin bitkisi, soğuk hava ile karşılaştığında gelişmesini dondurabileceği bir sisteme zaten sahiptir. Böyle bir yapının kendi kendine oluşması imkansızdır. Evrimcilerin "evrim süreci" adı altında uydurdukları hayali oluşum süreci ne kadar uzun olursa olsun, bu sırada ne tür tesadüfler gerçekleşirse gerçekleşsin, bitkileri hava durumundan haberdar eden böyle bir sistemin oluşması ihtimal dışıdır. 
Yine aynı şekilde mimosa glomeratanın tohumları, kurutulmuş bitki koleksiyonlarının saklandığı bir kapta 220 yıl saklanmış ve bu tohum suyla ıslatılır ıslatılmaz filizlenmiştir. Dayanıklı tohumlara başka bir örnek olarak da, 1942 yılında, 2. Dünya Savaşı sırasında 147 yıllık albizia julibrissin adlı bitkiyi verebiliriz. Londra`daki British Museum`da saklanan bu tohum yangın söndürme çalışmaları sırasında ıslanınca bu kadar yıldan sonra filizlenmiştir.32 
Tundra bölgelerinde hava sıcaklıkları düşük olduğu için bozulma daha yavaş olur. Öyle ki bazı tohumlar, 10.000 yaşındaki buzul tabakalarından çıkarılıp, laboratuvara alındığında gerekli miktardaki ısı ve nemin sağlanmasıyla birlikte tekrar hayata dönebilmektedirler.33 
Tohum hepimizin bildiği gibi içinde belli miktarda besin bulunan ve dış kabuğu tahtayı andıran bir cisimdir. İçine sıcaklığı ölçen bir aleti koyması, dış dünyadan bilgi alış-verişi yapmasını sağlayacak herhangi bir yöntem bulması ve sonucunda elde ettiği verileri değerlendirmeye alarak, bu bilgiler doğrultusunda hareket edecek muhakeme yeteneğine sahip olması gibi bir düşünce, son derece mantıksız hatta "akıl dışı" olarak nitelendirilebilir. Dış görünüşüne bakıldığında küçük bir tahta parçasına benzeyen, bulunduğu kapalı yerden, dışarısıyla hiçbir bağlantısı olmadan hava sıcaklığını ölçüp, daha sonraki safhalardaki gelişimi için sıcaklığın yeterli olup olmadığına karar verebilen olağanüstü bir cisimle karşı karşıyayız... Olumsuz koşulların çimlendikten sonra büyümesine engel olacağının farkında olan, bu şartları gördüğü anda gelişimini durdurmak için neler yapması gerektiğini bilen, sıcaklık yeterli hale geldiğinde kaldığı yerden gelişmesine devam edebilecek kadar mükemmel sistemlere sahip olan bir tahta parçası… 
Dayanıklı bir yapıya sahip olan tohumlardaki bu olağanüstü mekanizmanın, evrim teorisinin iddia ettiği gibi rastlantılarla açıklanması imkansızdır. Gerçekte tohumlar, zorlu koşullara dayanıklı olacak şekilde özel olarak tasarlanmışlardır, yani yaratılmışlardır.
Diğer yandan tohum fosillerine baktığımızda da yine çok açık yaratılış delilleri ile karşılaşırız. Günümüzden yaklaşık 350 milyon yıl önce (Devonian Dönemi olarak adlandırılan dönemde) bulunmuş tohum fosillerinde de bugünkü ile aynı koruyucu dış örtü, embriyo ve besin deposu mevcuttur.34 Bu da tohumların özel yapılarının şimdiki aynı özellikleriyle milyonlarca yıl önce de var olduklarının ve bugüne kadar hiç değişime uğramadıklarının, diğer bir ifadeyle "evrim" gibi bir hayali süreç geçirmediklerinin çok açık bir göstergesidir.
Hiç kuşkusuz ki alemlerin Rabbi olan Allah küçücük tohumlarda bile bize kendi varlığının ve yaratmasının delillerini sergilemektedir. Allah bir ayetinde bu delillerden şöyle bahseder:
O, gökten su indirendir. Bununla her şeyin bitkisini bitirdik, ondan bir yeşillik çıkardık, ondan birbiri üstüne bindirilmiş taneler türetiyoruz. Ve hurma ağacının tomurcuğundan da yere sarkmış salkımlar, -birbirine benzeyen ve benzemeyen- üzümlerden, zeytinden ve nardan bahçeler (kılıyoruz.) Meyvesine, ürün verdiğinde ve olgunluğa eriştiğinde bir bakıverin. Şüphesiz inanacak bir topluluk için bunda gerçekten ayetler (deliller) vardır. (Enam Suresi, 99)



Suda 80 Gün Kalabilen Tohumlar
Soğuk hava şartlarına dayanıklı olan tohumların yanı sıra bazı tohumlar da oldukça uzun süre suyun içinde kalmaya dayanıklı bir yapıya sahiptirler. Öyle ki 80 gün süreyle suda kalabilen ve bu süre içinde hiç bozulmayan, çimlenmeyen tohumlar bile vardır. Bunlardan en meşhuru hindistan cevizi palmiyesidir. Palmiyenin tohumu taşımanın güvenli olması için sert bir kabuğun içine yerleştirilmiştir. Bu sert kabuğun içinde uzun bir yolculuk için su da dahil olmak üzere ihtiyaç duyulan her şey hazırdır. Dış tarafı ise tohumun sudan zarar görmemesi için oldukça sert bir dokumayla kaplanmıştır. 
Deniz fasulyesi de tohumlarını su aracılığıyla yayan bitkilerdendir. Tohumları hindistan cevizi kadar büyük değildir ve taşıma işleminde sadece nehirleri kullanır.35 
Bu iki örnekte de görüldüğü gibi, su yoluyla üreyen bitkilerdeki en önemli özellik, tohumların tam karaya ulaştıkları zaman açılmalarıdır. Aslında bu son derece ilginç ve istisnai bir durumdur, çünkü bilindiği gibi bitki tohumları genellikle suya değdikleri anda çimlenmeye başlarlar. Ama bu durum söz konusu bitkiler için geçerli değildir. Tohumlarını suyla taşıyan bitkiler özel tohum yapıları sebebiyle bu konuda ayrıcalıklıdırlar. Eğer bu bitkiler de diğerleri gibi suyu görür görmez hemen çimlenmeye başlasalardı, soyları çoktan tükenmiş olurdu. Oysa yaşadıkları şartlara uygun genel mekanizmaları nedeniyle bu bitkiler varlıklarını sürdürebilmektedirler. 
Yeryüzündeki tüm bitkiler kendileri için en uygun yapılara sahiptirler. Bu istisnai özellikler akla, "nasıl olup da tam gereken türdeki bitkilerde bu dayanıklılık ortaya çıkmıştır?" sorusunu getirecektir. Bu sorunun cevabını bir örnek üzerinde verelim ve palmiye tohumlarını ele alalım: 
1. Palmiye tohumlarının suda uzun süre kalabilmek için dayanıklı bir yapıya ihtiyaçları olacaktır, bu yüzden kabukları oldukça kalındır. Kabukların sudan koruyucu özel bir yapısı vardır.
Bu bir tesadüf değildir! 
2. Uzun yolculukları sırasında normalden daha fazla besine ihtiyaçları olacaktır ve tam gerektiği kadar besin, palmiye tohumunun içine yerleştirilmiştir. 
Bu da bir tesadüf eseri değildir!
3. Karaya geldiklerini anlayıp tam o anda açılırlar. 
Bu hiçbir şekilde tesadüf değildir!
Görüldüğü gibi bu tohumlar sert kabuklarıyla, besin depolarıyla, büyüklükleriyle, kısacası tüm özellikleriyle gerekli durumlarda uzun süre dayanıklı olacak şekilde tasarlanmışlardır. Kabuğun sertlik miktarının ölçüldüğü, gerekli besin miktarının tespit edildiği bu ince ayarlı yapının tesadüfler sonucunda oluşmasını beklemek, tohumun daha karaya ulaşmadan su içinde çimlenmesi, yani ölmesi demek olacaktır. 
Oysa bu tohumların çimlenmesindeki hassas ölçüler sebebiyle böyle bir şey söz konusu bile olmaz. Tohumların yedek besinlerinin ve sularının miktarı, karaya ulaşma vakitleri kısacası tüm bu özelliklerindeki hesaplamalar hiç kuşkusuz ki tohumların kendi zeka ve kabiliyetleri ile olmamıştır. 
Tüm bu hassas hesap ve ölçüler, tohumları yaratan, onların her türlü ihtiyaçlarını ve özelliklerini bilen, sonsuz akıl ve bilgi sahibi olan Allah tarafından kusursuzca ayarlanmıştır. 
... O`nun katında herşey bir ölçü iledir. (Ra`d Suresi, 8)
Yere (gelince,) onu döşeyip-yaydık, onda sarsılmaz-dağlar bıraktık ve onda her şeyden ölçüsü belirlenmiş ürünler bitirdik. (Hicr Suresi, 19)



Ücretli Bir Taşıyıcı – Karınca
Bazı tohumların yapısı genelde bilinenden farklı özelliklere sahiptir. Bu özellikler incelendiğinde çok ilginç sonuçlarla karşılaşılabilir. Örnek olarak çevresi yağlı, yenilebilir bir dokuyla kaplı olan bir tohumu ele alalım. İlk bakışta alelade gelebilecek bu yağlı doku, gerçekte bitkinin neslinin devamlılığı açısından çok önemli bir detaydır. Çünkü bu özellik karıncaların söz konusu bitkiye ilgi duymasına sebep olmaktadır. Bu bitkilerin üremesi pek çok bitkiden farklı olarak karıncalar vasıtasıyla gerçekleşir. Tohumunu toprağın altına kendisi koyamayan bitki, bunu karıncalara taşıtma yöntemini seçmiştir. Bu bitkilerin tohumlarındaki yağlı doku, taşıyıcı karıncalar için çok cazip bir yiyecektir. Karıncalar bunları büyük bir istekle toplayıp yuvalarına taşırlar. Böylece daha ilk aşamada hiç bilmeden tohumu toprağın altına gömmüş olurlar.
Karıncaların bu kadar çabalamalarının nedeni tohumu yiyecek olmaları diye düşünülebilir, ama bu yanlış bir çıkarım olacaktır. Karıncalar binbir zahmetle tohumları yuvalarına taşımalarına rağmen sadece kabuğunu yer, etli iç kısmını bırakırlar. Bu sayede hem karınca besin elde etmiş, hem de bitkinin üremesini sağlayacak bölüm toprak altına inmiş olur.36 Karıncanın bunu bilinçli yaptığı ya da bitkinin, tohumuna özellikle bu karınca türünün hoşuna gidecek özellikleri kazandırdığı, karıncayla aynı ortamda bulunmayı ayarladığı gibi bir iddia da bilimsel açıdan hiçbir geçerliği olmayan bir iddia olmaktan öteye gidemeyecektir. 
Hiç kuşkusuz ki bu kusursuz uyumu sağlayan şuur ne karıncaya ne de bitkiye aittir. Her iki canlının sahip oldukları tüm özelliklerden haberdar olan, birbirlerine uyumlu yaratan bir Yaratıcı`ya aittir. Yani bu şuuru onlara veren onları her ayrıntısıyla yaratan Allah`a aittir.
Göklerde ve yerde bulunanlar O`nundur; hepsi O`na `gönülden boyun eğmiş` bulunuyorlar. (Rum Suresi, 26)



Tohumun Bitkiye Dönüşmesi İlk Aşama: Filizlenme
Tohumu hiç görmemiş olsaydık ve ne işe yaradığını da bilmeseydik içinden birbirine hiç benzemeyen sayısız bitkinin çıkabileceğini, bu bitkilerin de metrelerce yüksekliğe ulaşacaklarını tahmin edebilir miydik? Tabi ki tahmin edemezdik.
Pek çoğu küçük kuru tahta parçalarına benzeyen tohumlar, aslında içlerinde bitkilere ait binlerce bilgiyi barındıran genetik şifre taşıyıcılarıdır. İleride oluşturacakları bitkiler ile ilgili tüm bilgiler tohumların içinde saklıdır. Bitkinin kökünün ucundaki tüycükten, gövdesinin içindeki borucuklara, çiçeklerinden, vereceği meyveye kadar tüm bilgiler en küçük detaylarına kadar eksiksiz olarak tohumun içinde mevcuttur. 
Döllenmenin ardından oluşan tohumun bir bitkiye dönüşmesindeki ilk aşama filizlenmedir. Toprağın altında beklemekte olan tohum ancak ısı, nem ve ışık gibi faktörlerin bir araya gelmesiyle hareketlenip canlanır. Bundan önce ise adeta bir uyku halindedir. Zamanı geldiğinde uykusundan uyanır ve büyümeye başlar. 
Filizlenme işleminin birkaç aşaması vardır. İlk önce, tohum ıslanmalıdır ki, içinde bulunan hücreler nemlensin ve metabolizma faaliyetleri başlayabilsin. Bu faaliyetler bir kez başladıktan sonra kök ve filiz de büyür ve bu aşamada hücre bölünmesi başlar. Bir yandan da belli fonksiyonların özel dokular tarafından gerçekleştirilebilmesi için hücre farklılaşması olur. Bütün bu aşamalar çok fazla enerji gerektirir.
Tohumun büyümek için besine ihtiyacı vardır. Fakat tohumun, buradaki mineralleri kökleriyle alacak hale gelene kadar beslenebileceği bir kaynağı yoktur. Öyleyse tohum, büyümesi için gerekli olan besini nasıl bulmaktadır?
Bu sorunun cevabı tohumun yapısında gizlidir. Döllenme sırasında tohumla birlikte oluşan besin deposu, filiz verip toprak dışına çıkana kadar tohumlar tarafından kullanılacaktır. Tohumlar kendi besinlerini üretir hale gelinceye kadar, bünyelerindeki yedek besinlere ihtiyaç duyarlar. 
Gereken koşullar sağlanıp da çimlenme başladığında tohum topraktan suyu çeker ve embriyo hücreleri bölünmeye başlar, daha sonra tohum kabuğu açılır. Önce kök sisteminin başlangıcı olan kökçükler sürgün verirler ve toprakta aşağı doğru büyürler. Kökçüklerin gelişmesini, sap ve yaprakları üretecek olan tomurcukların gelişimi izler.
Tohum toprak üstüne ışığa doğru yönelir ve sürekli güçlenir. Çimlenme toprak altında başlamıştır. İlk gerçek yapraklar açıldığındaysa bitki, fotosentez yoluyla kendi besinini üretmeye başlar. 
Buraya kadar anlatılanlar, aslında herkesin çok iyi bildiği, hatta sık sık gözlemlediği konulardır. Tohumların toprağı yararak içinden çıkmaları herkes için çok alışılmış bir olaydır. Ama tohumun büyümesi sırasında gerçekte bir mucize gerçekleşmektedir. Ağırlığı ancak "gram"larla ifade edilebilecek olan tohum, üzerindeki kilolarca ağırlıktaki toprağı delerek yukarı çıkarken hiç zorlanmaz. Tohumun tek amacı toprağın üstüne çıkıp ışığa ulaşmaktır. Çimlenmeye başlayan bitkiler incecik gövdeleriyle sanki boş bir alanda hareket ediyormuş ve üzerlerinde onca ağırlık yokmuşçasına, oldukça rahat bir şekilde, yavaş yavaş gün ışığına doğru yol alırlar. Yer çekimine karşı koyarak, yani kendileriyle ilgili olan tüm fizik kurallarını da hiçe sayarak topraktan çıkarlar. 
Toprağın normalde çürütücü, parçalayıcı özelliği olmasına rağmen, küçücük tohum ve milimetrenin yarısı inceliğindeki kökler hiçbir zarar görmezler. Aksine sürekli gelişerek büyürler.
Toprağın altındaki tohumun yüzeye çıkış yolu çeşitli yöntemlerle kapatılarak, gün ışığına ulaşmasını engellemek için deneyler yapılmıştır. Deneyler sonucunda ortaya çıkan sonuçlar çok şaşırtıcı olmuştur. Tohum, önüne çıkan her engelin etrafından dolaşacak kadar uzun filizler çıkartarak ya da büyüdükleri yerde baskı yaratarak sonuçta yine gün ışığına ulaşmayı başarmıştır. Bitkiler büyüme süreçlerinde, büyüdükleri yerde büyük bir baskı yaratabilirler. Mesela yeni yapılmış bir yolda yarıkların içinde yetişen bazı fideler yarıkların daha da genişlemesine yol açabilirler. Kısacası tohumlar gün ışığına çıkarken engel tanımazlar.37 
Tohum filizlenip topraktan çıkarken her zaman dik olarak çıkar. Bunu yaparken tohum yer çekimine aykırı hareket etmektedir. Kökler ise yer çekimine uygun hareket ederek toprağın içlerine doğru ilerlerler. Bu durum akla şu soruyu getirir: 
"Aynı bitkinin iki ayrı organı nasıl olup da bu şekilde zıt yönlere doğru bir büyümeyi başarırlar?" Bu sorunun cevabını verebilmek için bitkilerdeki bazı mekanizmaları inceleyelim.
Bitkilerde büyümeyi yönlendiren uyarılar iki türlüdür; ışık ve yer çekimi. Tohumdan çıkan ilk kök ve filiz bu iki çeşit uyarıya karşı oldukça duyarlı sistemlerle donatılmışlardır. 
Filizlenen bitkinin köklerinde yer çekimi sinyallerini algılayan hücreler bulunur. Yukarıya doğru yükselen gövde kısmında ise ışığa duyarlı olan hücreler bulunur. İşte bu hücrelerin ışığa ve yer çekimine duyarlı olması da bitkinin parçalarını gereken yerlere doğru yönlendirir. Bu iki uyarı türü, köklerin ve filizin büyüme yönü eğer dikey değil de farklı bir yöne doğru ilerliyorlarsa, yönlerini düzeltmelerini de sağlar.38 
Buraya kadar verilmiş olan bilgiler tekrar gözden geçirildiğinde çok olağanüstü bir durumla karşı karşıya olunduğu hemen görülecektir. Bitkiyi oluşturan hücreler birdenbire başkalaşmaya başlamakta ve değişik şekiller alarak bitkinin bölümlerini oluşturmaktadırlar. Üstelik de köklerde ve gövdede görüldüğü gibi farklı yönlerde hareket etmektedirler. 
Gelin, kökün yer çekimiyle hareket ederek toprağın derinliklerine gitmesini, gövdenin de toprağın üstüne doğru hareket etmesini birlikte düşünelim. Dıştan bakıldığında son derece güçsüz bir görünüme sahip olan bu yapıların toprağı yararak yaptıkları hareketler akla pek çok soru getirecektir. Öncelikle bu noktada ele alınması gereken çok önemli bir karar anı vardır. Öyleyse bu anı, yani hücrelerin başkalaşmaya başladığı zamanı belirleyen, onlara gidecekleri yönü gösteren kimdir ya da nedir? Nasıl olup da her hücre hangi bölümde yer alacağını bilerek hareket etmektedir? Nasıl olup da bir karışıklık çıkmamakta örneğin kök hücreleri sadece toprağın içine doğru uzamaktadır? 
Bunlara benzer bütün soruların aslında tek cevabı vardır. Bu kararı alan ve uygulayan, karışıklık çıkmaması için gerekli olan sistemleri belirleyen ve bünyesinde bunları oluşturan elbette ki bitkinin kendisi değildir. Bitkiyi oluşturan hücreler de bunları yapamazlar. Başka bir canlının müdahalesiyle de bu sistemlerin oluşması mümkün değildir. Bütün bunlar bize bitkilerin başka bir güç tarafından yönlendirildiklerini, yönetildiklerini gösterir. Yani bu kararı hücrelere aldırtan, onlara görevlerine göre ne yöne gitmeleri gerektiğini gösteren ve sahip oldukları tüm yapıları yaratan üstün bir aklın varlığını gösterir. Bu aklın sahibi hiç kuşkusuz ki tüm alemlerin Rabbi olan Allah`tır.



Engel Tanımayan Filizler
Topraktan çıkan filiz her zaman uygun bir ortama ulaşamayabilir; örneğin kendini bir kayanın veya büyük bir bitkinin gölgesi altında bulabilir. Bu durumda büyümeye devam ederse, güneş ışığını alamayacağından fotosentez yapması zorlaşacaktır. Eğer filiz, yeryüzüne çıktığında kendini böyle bir ortamda bulursa, hemen ışık kaynağına doğru büyüme yönünü değiştirir. Fototropizm olarak bilinen bu işlem göstermektedir ki, filizler de ışığa duyarlı yön tayini sistemine sahiptir. Hayvanlarla ve insanlarla karşılaştırdığımızda bitkiler, ışığı algılama konusunda daha avantajlı durumdadırlar. Çünkü hayvanlar ve insanlar sadece gözleriyle ışığı algılayabilirler. Bitkilerdeki yön tayin sistemleri ise son derece keskindir. Bu yüzden hiçbir zaman yönlerini şaşırmazlar. Işığa ve yer çekimine dayalı kusursuz yön bulma sistemleri sayesinde kolaylıkla yönlerini bulabilirler. 
Bitkiler ışığı algılayıcı sistemlerin yanı sıra hücre bölünmesinin gerçekleştiği özel büyüme bölgelerine de sahiptirler. Meristem olarak adlandırılan bu dokular genellikle kök ve gövde uçlarında bulunurlar. Filizin gelişimi sırasında eğer büyüme bölgesindeki hücreler hep aynı şekilde büyürlerse bu, gövdenin düz olmasını sağlar. Her bitkinin Meristem dokusunun büyüme yönüne göre şekilleri belirlenir. Eğer bu hücrelerin büyümesi bir kenarda fazla, diğerinde az olursa bitkinin gövdesi eğimli büyüyecektir. Bitkilerdeki büyüme eğer şartlar uygunsa tüm bölgelerde aynı anda başlar. Filizden çıkan bitkinin bir yandan gövdesi acil ihtiyacı olan ışığa doğru ilerler. Öte yandan topraktan bitki için gerekli olan su ve mineralleri sağlayacak olan kökler de yer çekimini algılayan rehber sistemleri sayesinde büyümelerini en etkili biçimde gerçekleştirirler. İlk bakışta bitkilerin kök uzantılarının toprağın altına rasgele yayıldığı düşünülebilir. Oysa gerçekte kök uzantıları bu duyarlı sistem sayesinde kontrollü bir şekilde, hedeflerine kilitlenmiş füzeler gibi ilerlerler.
Bu mekanizmalarla kontrol edilen büyüme, bitkiden bitkiye farklılıklar gösterir. Çünkü her bitkide büyüme kendi genetik bilgisine uygun olarak gerçekleşir. Bu yüzden her bitkide maksimum büyüme oranları da farklıdır. Örneğin bir mısır sapı için maksimum büyüme süresi altı hafta iken, bir kayın ağacı için bu süre çeyrek asır olmaktadır.39 
Çimlenme küçücük bir cisimden metrelerce uzunluktaki ve tonlarca ağırlıktaki bir bitkinin oluşmasının ilk aşamasıdır. Yavaş yavaş büyüyen bitkinin kökleri yere, dalları yukarıya doğru uzanırken, içindeki sistemler de (besin taşıyacak sistemler, döllenmesini sağlayacak sistemler, bitkinin uzamasını, genişlemesini ve bunların durmasını kontrol eden hormonlar) hep birlikte ortaya çıkar ve hiçbirinin oluşumunda bir aksama ya da gecikme olmaz. Bitki için gerekli olan her şey aynı anda gelişir. Bu son derece önemlidir. Örneğin, bir yandan çiçeğin döllenme mekanizması gelişirken, diğer yandan da taşıma boruları (besin ve su taşıma boruları) oluşmaktadır. Aksi takdirde, mesela çiçek döllenme mekanizması oluşmayan bir bitkide, soymuk ya da odun borularının hiçbir önemi olmayacaktır. Köklerin oluşmasının da bir anlamı yoktur. Çünkü böyle bir bitki neslini devam ettiremeyeceği için, ek mekanizmalar bir işe yaramayacaktır. 
Görüldüğü gibi bitkilerdeki birbirine bağlı ve tam uyumlu olan bu mükemmel tasarımda kesinlikle tesadüfen oluşamayacak bir plan vardır. Evrimci bilim adamlarının iddia ettiği gibi kademeli bir oluşum hiçbir şekilde söz konusu değildir. 
Gelin bunu herkesin yapabileceği basit bir deneyle gösterelim. Bir adet tohumu ve bununla birlikte yine bu tohumun büyüklüğünü, ağırlığını ve içerdiği moleküllerin karışımını içeren bir maddeyi belirli bir derinliğe gömelim ve bir süre bekleyelim. Ektiğimiz tohumun cinsine göre gereken süre geçtiğinde tohumun toprağı yararak yeryüzüne çıktığını görürüz. Oysa ne kadar beklersek bekleyelim diğer maddenin toprağın üstüne çıkışını göremeyiz. İster yüz yıl bekleyin, ister bin yıl bekleyin sonuç değişmeyecektir. Bu farkın nedeni tabii ki tohumlardaki özel tasarımdır. Bitkilerin genlerine, bu işlem için gerekli bilgiler kodlanmıştır. Bitkilerde var olan tüm sistemler bilinçli bir seçimin varlığını kanıtlar. Bütün detaylar bitkilerin rastlantılarla oluşmasının mümkün olmadığını, aksine bitkilerin ortaya çıkışında son derece bilinçli bir müdahalenin olduğunu gösterir. 
Elbette ki böyle kusursuz bir tasarım her şeyi en ince ayrıntısıyla bilen ve meydana getiren bir Yaratıcı`nın varlığının delilidir. Bitkilerin yaşamındaki yalnızca ilk aşama yani tohumun oluşumu bile bize üstün güç sahibi Yaratıcı`nın yaratmasındaki benzersizliği açıkça göstermektedir. Nitekim Allah Kuran`da bu gerçeğe şöyle dikkat çekmiştir:
"Şimdi ekmekte olduğunuz (tohum)u gördünüz mü? Onu sizler mi bitiriyorsunuz, yoksa bitiren Biz miyiz? Eğer dilemiş olsaydık, gerçekten onu bir ot kırıntısı kılardık; böylelikle şaşar-kalırdınız." (Vakıa Suresi, 63-65)

DOĞAL SONDAJCILAR: KÖKLER
Bitkilerin yaşamlarını sürdürebilmeleri için fotosentez yapmaya, bu işlem için de topraktan alacakları suya ve minerallere ihtiyaçları vardır. Bu ihtiyaçlarını karşılamak için de toprak altında sondaj yapan köklere gereksinim duyarlar. Köklerin görevi, toprağın altına bir ağ gibi hızla yayılıp su ve mineralleri çekmektir. Bununla birlikte bitki kökleri, narin yapılarına rağmen tonlarca ağırlığa ulaşabilen bitkilerin toprağa sıkıca bağlanıp tutunmalarını da sağlarlar. Köklerin toprağı tutma özelliği son derece önemlidir, çünkü bu sayede toprak kaymaları, toprağın verimli üst katmanlarının yağmurlarla kaybı gibi insan yaşamını etkileyecek olumsuz etmenler de ortadan kalkmış olur. 
Bu işlemleri yaparken kökler hiçbir teçhizata gerek duymazlar. Köklerin suyu çekme işlemini başlatacak gücü sağlayan bir motorları yoktur. Suyu ve mineralleri metrelerce uzunluktaki gövdeye pompalayacak bir teknik donanımları da mevcut değildir. Ama kökler çok geniş bir alana yayılarak suyu çekebilirler. Peki, kökler bu işi nasıl başarmaktadırlar?



Bu Sistem Nasıl İşler?
Erişkin bir akçaağaç sıcak bir yaz gününün öğleden sonrasında her saat için, tek başına yaklaşık olarak 265 litre su kaybeder. Bu, ağaç için çok önemli bir kayıptır. Hemen kaybolan miktarda suyun yerine konması gereklidir. Bitkilerde bulunan kusursuz kök sistemi sayesinde buharlaşan suyun her damlası anında yenilenir.40 
Toprağın derinliklerine dağılmış olan kökler, bitkinin ihtiyacı olan su ve mineralleri, gövde ve dallar vasıtasıyla yapraklara kadar ulaştırırlar. Köklerin topraktaki suyu emmeleri adeta bir sondajlama tekniğini andırır. Kök uçları, topraktaki suyu bulana kadar toprağın derinliklerini aramaya devam ederler. Su köke, öncelikle dış zarından ve kılcal hücrelerden girer. Hücre içinden ve hücre kabuklarından gövde dokusuna geçer. Buradan da bitkinin her bölümüne dağıtılır. 
Bitkinin kusursuz bir şekilde yerine getirdiği bu işlem aslında son derece karmaşık bir işlemdir. Öyle ki bu sistemin sırrı teknoloji ve uzay çağına eriştiğimiz günümüzde bile tam olarak anlaşılabilmiş değildir. Ağaçlardaki, bu bir nevi "hidrofor sistemi"nin varlığı yaklaşık iki yüzyıl önce keşfedilmiştir. Ancak suyun yer çekimine aykırı bu hareketinin nasıl gerçekleştiğine kesin bir açıklama getirebilen bir kanun hala bulunamamıştır. Bu konuda bilim adamları sadece çeşitli teoriler öne sürmüşlerdir. Bu teorilerin ortaya attığı mekanizmalardan deneylerle ispatlanabilenler, belli bir oranda geçerli sayılmaktadırlar. Bilim adamlarının tüm bu uğraşıları neticesinde varılan sonuç aslında hidrofor sistemindeki kusursuzluktur. Böylesine küçük bir alana sığdırılmış olan teknoloji, bu sistemin tasarımcısının benzersiz aklını bize gösteren delillerden sadece bir tanesidir. Ağaçlardaki taşıma sistemleri de evrendeki her şey gibi Allah tarafından yaratılmıştır. 

Bitki Köklerindeki Basınç Sistemi
Bitkiler, köklerindeki hücrelerin iç basınçları dış basınçlarından az olduğunda dışarıdan su alırlar. Başka bir deyişle bitki, topraktan ancak ihtiyacı olduğu zamanlarda su almaktadır. Bunu belirleyen en önemli faktör, bitkinin köklerinin içinde bulunan suyun meydana getirdiği basınç miktarıdır. Bu basıncın dışarıdaki basınç miktarı ile dengelenmesi gereklidir. Bitki bunu sağlayabilmek için, içerideki basınç miktarı azaldığında kökler vasıtası ile dışarıdan su alma ihtiyacı duyar. Bunun tam tersi olduğunda ise, yani bitkideki iç basınç dışarıdakine oranla daha yüksek olduğunda, bitki bu dengeyi sağlayabilmek için bünyesindeki suyu yapraklarından dışarı bırakır. 
Eğer suyun topraktaki yoğunluğu normalde olduğundan biraz daha yüksek olsaydı, dış basınç çok yüksek olacağından bitki sürekli su alacak ve bir süre sonra bitki bundan zarar görecekti. Bunun tam tersine suyun topraktaki yoğunluğu daha düşük olsaydı, bitki hücresi dış basınç çok düşük olacağından dışarıdan hiçbir zaman su alamayacaktı. Hatta basıncı dengelemek için bünyesindeki suyu dışarı salacak yani her iki durumda da kuruyarak ölecekti. 
Görüldüğü gibi bitki kökleri ne eksik ne de fazla, sadece o anki şartlarda ihtiyaç duyulan miktarda basınç ayarlaması yapabilecek bir denge-kontrol mekanizması ile donatılmışlardır. 

Köklerin Topraktan İyonları Almaları
Bitki kökünde yer alan hücreler, hücre içindeki reaksiyonlarda kullanmak için topraktaki belli iyonları seçerler. Bu son derece önemli bir işlemdir. Çünkü bitki hücreleri, kendi içlerindeki iyonların yoğunluğu, topraktaki iyonların yoğunluğundan 1000 kez daha fazla olmasına rağmen bu iyonları hücre içine kolaylıkla alabilirler.41
Normal şartlar altında yüksek yoğunluktaki bir bölgeden, yoğunluğu daha az olan bölgeye doğru madde akışı gerçekleşir. Fakat görüldüğü gibi bitki köklerinin topraktan iyon temininde bunun tam tersi meydana gelmektedir. İşte bu nedenle bu işlem için yüksek miktarda enerjiye ihtiyaç vardır. 
İyonların hücre zarından geçişinde iki faktör etkili olmaktadır. Zarın iyon geçirgenliği ve zarın iki tarafındaki iyonların yoğunluk farkı.
Bu iki faktörü sorular sorarak inceleyelim. Bir bitkinin topraktaki elementlerin içinden kendisine "gerekli olanları seçmesi" ne anlama gelmektedir? Öncelikle buradaki "gerekli" kavramını ele alalım. Bu "gereklilik" için kök hücresinin bitkinin tamamındaki elementleri teker teker tanıması şarttır. Tanıdığı bu elementlerin de bitkinin her yerindeki eksikliğini tespit etmesi ve ihtiyaç olarak belirlemesi gerekmektedir. Yine soru soralım. Bir element nasıl tanınır? Eğer toprakta saf halde bulunmuyorsa, yani başka elementlerle bir arada bulunuyorsa, diğerlerinden ayırt etmek için ne yapmak gerekir?
Bir kişinin önüne demir, kalsiyum, magnezyum, fosfor gibi elementler karışık olarak koyulsa, hangisinin ne olduğunu hiç yardım almadan bulması mümkün müdür? Bu kişi elementleri nasıl ayırt eder? Eğer bu konuda detaylı bir eğitim almışsa ancak belli bir miktarını ayırt edebilecektir. Geri kalanların ise ne olduklarını bilmesine imkan yoktur. Peki bitkiler bu ayrımı nasıl yapmaktadırlar? Daha doğrusu bir bitkinin kendi kendine elementleri tanıması, ayırt etmesi ve kendisine faydalı olanları bulması mümkün müdür? Böyle bir işlemin milyonlarca yıldır her seferinde, en doğru şekilde gerçekleşmesi tesadüfen mümkün olur mu? Herbirinin cevabı "imkansız" olan bu sorular hakkında daha derin ve ayrıntılı düşünebilmek için köklerin nasıl bir seçicilik özelliğine sahip olduğunu ve bu sırada gerçekleşen olayları inceleyelim.




Köklerin Seçiciliği
Doğada çeşitli şekillerde bulunduğunu bildiğimiz elementler, mineraller hakkındaki kimya bilgilerimizi tekrar gözden geçirelim. Nerelerde bulunurlar, hangi madde hangi sınıfa girer, aralarındaki farklar nelerdir, hangisinin ne olduğunu anlamak için ne gibi deneyler ya da gözlemler yapmak gerekir, bu deneylerde kimyasal olarak mı, yoksa fiziksel olarak mı daha hızlı sonuç elde edilir? Sadece fiziksel olarak bakılacak olsa bir masaya koyulan bu maddeler arasında kolaylıkla doğru bir sıralama yapılabilir mi? Renklerinden ya da şekillerinden mineraller ayırt edilebilirler mi? 
Bu soruları çoğaltmak mümkündür. Bunlara verilen cevaplarsa aşağı yukarı aynı olacaktır. Eğer bu konuda bir uzmanlaşma söz konusu değilse, lise ve üniversite bilgilerinden arta kalanlarla verilen üstün körü cevaplar kişiyi kesin bir sonuca götürmeyecektir. Mineraller hakkındaki bilgilerimizi sınamak için bu kez de insan vücudundan örnekler verelim.
Vücudumuzda toplam olarak yaklaşık üç kilo mineral vardır. Bunların bir kısmı organizmanın sağlığı için mutlaka gereklidir ve hepsinin vücutta bulunması gereken belirli miktarlar vardır. Örneğin vücutta kalsiyum olmasa dişler ve kemikler sertliğini kaybeder, demir olmayınca hemoglobin de olmayacağından dokularımıza oksijen ulaşamazdı. Potasyum ve sodyum olmasa hücrelerimiz elektrik yükünü kaybeder ve hızla yaşlanırdık. 
İnsan vücudunda bulunan minerallerin aynısı toprakta da bulunur. Bunların da hepsinin oranları, görevleri ve toprakta bulunuş şekilleri farklıdır ve bu minerallerden faydalanan pek çok canlı vardır. Örneğin bitkilerde, kendileri için gerekli olan elementleri topraktan kolaylıkla alabilecek şekilde sistemler tasarlanmıştır. Yapılarında yer alan elementlerin hepsinin farklı kullanım alanları, dolayısıyla topraktan alındıktan sonra gitmeleri gereken farklı yerler vardır. Hepsinin görevi ayrıdır. 
Bitkiler ihtiyaçları olan tüm mineral besinlerini topraktan alırlar. Bu maddeler toprakta tek olarak bulunmadığı için, bitki bunları iyon olarak emer. Toprak çözeltisinde bulunan çok sayıdaki inorganik iyon arasından bitkiler sadece ihtiyaçları olan 13 tanesini alırlar. Bitkiler, aslında bunlara toprakta bulundukları yoğunluktan daha yüksek yoğunlukta ihtiyaç duyarlar. Bu da gerçekte köklerin ne kadar mükemmel bir toplama sistemine sahip olduklarını gösterir. Öyle ki kökler, ihtiyaçları olan iyonları kendi bünyelerindeki yüksek yoğunluğa rağmen kök hücrelerinden geçirerek pompalarlar.42
Basınç sisteminin tersine işleyen bir şekilde gerçekleşen bu pompalama işlemi oldukça zorlu bir iştir. Bu nedenle pompalara yüksek enerji sağlanması gereklidir. Sonuçta, istenilen iyonları çeken ve istenmeyenleri geri iten bir tanıyıcı sistem olması da zorunludur. Bu da iyon pompalarının sadece basit birer pompa olmadıklarını, iyonları seçme özelliğine de sahip olduklarını göstermektedir. Ayrıca bitkilerin topraktan seçilmiş iyonları emerek kullanması, onların tüm canlılar için neden değerli bir mineral besin kaynağı olduğunu da açıklamaktadır. 
Bir bitkinin sağlıklı olarak yaşayabilmesi için nitrojen, potasyum, fosfor, kalsiyum, magnezyum, sülfür gibi ana elementlere ihtiyacı vardır. Bu maddelerin çoğunu bitkiler topraktan direkt olarak temin edebilirken azot için durum farklıdır. Atmosferde %80lik bir orana sahip olan bu gazı bitkiler havadan doğrudan alamazlar. Ancak toprakta bulunan ve nitrojen bağlayan bakterilerden bu ihtiyaçlarını karşılayabilirler. 
Diğer elementler de sağlıklı gelişim için gereklidir. Fakat bunlara oldukça az miktarlarda ihtiyaç duyulur. Bu grup demir, klor, bakır, manganez, çinko, molibden ve bor içerir. 
Bu on üç gerekli minerale ek olarak bitkiler karbon, hidrojen ve oksijen gibi üç temel yapı taşına da ihtiyaç duyarlar ve bunları atmosferdeki karbondioksit, oksijen ve sudan alırlar. Tüm bitkiler toplam olarak bu 16 elemente ihtiyaç duyarlar. 
Bu elementlerin yeteri kadar alınamaması ya da fazla alınması durumunda bitkide çeşitli eksiklikler ortaya çıkacaktır.
Örneğin nitrojen, topraktan fazla alınması durumunda yüksek ısıda kolay kırılmaya ve güçsüz büyümeye sebep olabilir, az alınması durumundaysa bitkilerde sararma, kırmızılıkların ve morlukların oluşması, az tomurcuklanma ve geç büyüme gibi sonuçlar doğurabilir. Fosfor eksikliğindeyse, büyüme yavaşlar, renk koyulaşır, bazı bitkilerdeki yapraklarda kahverengileşme ve morarma oluşur, yine tomurcuklanma azalır ve alttaki yapraklar dökülür, çiçek açımı azalır. Körpe bitkilerin gelişmesi ve tohumlanma için fosfor çok önemli bir elementtir. Kısacası bitkilerin sağlıklı büyümeleri için bu iyonların varlığı ve topraktan gerektiği kadar alınmaları şarttır.43 
Bitkiler bu iyon seçici mekanizmaya sahip olmasalardı ne olurdu? Topraktan sadece gerekenleri değil de her türlü minerali alsalardı ya da gereğinden daha az ya da fazla mineral alsalardı neler olurdu? Hiç kuşkusuz ki şu anda yeryüzünde bulunan kusursuz dengede önemli bozulmalar meydana gelirdi.




YAPRAKLAR VE FOTOSENTEZ
On yedinci yüzyılda yaşamış Belçikalı bir fizikçi olan Jan Baptisa Van Helmont bilimsel deneylerinden birinde bir söğüt ağacının büyümesini gözlemledi ve çeşitli ölçümler yaptı. Ağacı önce tarttı, ardından 5 yıl sonra ikinci kez tekrar tarttı ve ağırlığını 75 kg artmış olarak buldu. Bitkinin içinde büyüdüğü kaptaki toprağı tarttığındaysa, bu 5 yıllık zaman içinde sadece birkaç gram azaldığını gördü. Fizikçi Van Helmont, bu deneyinde, söğüt ağacının büyüme sebebinin sadece saksıdaki toprak olmadığını ortaya çıkardı. Bitki büyümek için toprağın çok az bir kısmını kullandığına göre başka bir yerlerden besin alıyor olmalıydı.44 
İşte 17. yüzyılda Van Helmont`un keşfetmeye çalıştığı bu olay, bazı aşamaları günümüzde dahi tam olarak anlaşılamamış olan fotosentez işlemidir. Yani bitkilerin kendi besinlerini kendilerinin üretmeleridir. 
Bitkiler besinlerini üretirken sadece topraktan faydalanmazlar. Topraktaki minerallerin yanında, suyu ve havadaki CO2`i de kullanırlar. Bu hammaddeleri alıp yapraklarındaki mikroskobik fabrikalardan geçirerek fotosentez yaparlar. Fotosentez işleminin aşamalarını incelemeden önce fotosentezde son derece önemli bir role sahip olan yaprakların incelenmesinde fayda vardır.

Yaprakların Genel Yapısı
Hem genel yapı olarak, hem de mikrobiyolojik açıdan incelendiğinde yaprakların her yönüyle en fazla enerji üretimini sağlamak üzere planlanmış, çok detaylı ve kompleks sistemlere sahip oldukları görülecektir. Yaprağın enerji üretebilmesi için ısı ve karbondioksidi dış ortamdan alması gerekir. Yapraklardaki tüm yapılar da bu iki maddeyi kolaylıkla alacak şekilde düzenlenmiştir. 
Öncelikle yaprakların dış yapılarını inceleyelim. 
Yaprakların dış yüzeyleri geniştir. Bu da fotosentez için gerekli olan gaz alış-verişlerinin (karbondioksidin emilmesi ve oksijenin atılması gibi işlemlerin) kolay gerçekleşmesini sağlar. 
Yaprağın yassı biçimiyse tüm hücrelerin dış ortama yakın olmasını sağlar. Bu sayede de gaz alış-verişi kolaylaşır ve güneş ışınları, fotosentez yapan hücrelerin hepsine ulaşabilir. Bunun aksi bir durumu gözümüzün önüne getirelim. Yapraklar eğer yassı ve ince bir yapıya değil de herhangi bir geometrik şekle ya da anlamsız rasgele bir şekle sahip olsalardı yaprak fotosentez işlevini sadece güneş ile doğrudan temas eden bölgelerinde gerçekleştirebilecekti. Bu da bitkilerin yeterli enerji ve oksijen üretememesi anlamına gelecekti. Bunun canlılar için en önemli sonuçlarından biri de hiç kuşkusuz ki yeryüzünde bir enerji açığının ortaya çıkması olurdu.
Yapraklardaki özel olarak "tasarlanmış" olan sistemler sadece bunlarla sınırlı değildir. Yaprak dokusunun önemli bir özelliği daha vardır. Bu özellik ışığa karşı duyarlı olmasıdır. Bu sayede ışık kaynağına yönelme, yani fototropizm adı verilen olay gerçekleşir. Bu, saksı bitkilerinde de rahatça gözlemlenen, bitkilerin yapraklarını güneşin geldiği yöne doğru çevirmesine neden olan olaydır. Bitki böylelikle güneş ışığından daha fazla faydalanabilir. 
Yapraklar bitkilerin hem nükleer enerji üreten santralleri, hem besin üreten fabrikaları, hem de önemli reaksiyonları gerçekleştirdikleri laboratuvarlarıdır. Yapraklarda hayati önem taşıyan bu işlemlerin nasıl gerçekleştirildiğini anlamak için yaprakların fizyolojik yapısını da kısaca incelemek gerekir. 
Yaprağın iç yapısının enine kesiti alınarak bakılacak olursa dört tabakalı bir yapı olduğu görülecektir.
Bu yapılardan ilki kloroplast içermeyen epidermis tabakasıdır. Yaprağı alttan ve üstten örten epidermis tabakasının özelliği, yaprağı dış etkilerden korumasıdır. Epidermisin üstü koruyucu ve su geçirmez mumsu bir madde ile sarılıdır. Bu maddeye kütiküla adı verilir. Yaprağın iç dokusuna baktığımızda ise genelde iki hücre tabakasından oluştuğunu görürüz. Bunlardan iç dokuyu oluşturan Palizad dokuda kloroplastça zengin hücreler, aralarında hiç boşluk bırakmadan yan yana dizilirler. Bu doku fotosentezi yürüten dokudur. Bunun altında bulunan Sünger doku ise, solunumu sağlayan dokudur. Sünger dokudaki hücreler, diğer bölümlerdeki hücrelere göre daha gevşek bir şekilde birbirine kenetlenmiştir. Ayrıca bu dokunun hücreleri arasında hava ile dolu boşluklar vardır.45 Görüldüğü gibi bu dokuların hepsi yaprağın yapısında son derece önemli görevlere sahiptir. Bu tür düzenlemeler yaprakta ışığın daha iyi dağılıp yayılmasını sağlayarak fotosentez işleminin gerçekleşmesi açısından son derece büyük bir önem taşırlar. Bütün bunların yanı sıra yaprak yüzeyinin büyüklüğüne göre yaprağın işlem yapma (solunum, fotosentez gibi) yeteneği de artar. Örneğin birbirine geçmiş tropikal yağmur ormanlarında genellikle geniş yapraklı bitkiler yetişir. Bunun çok önemli sebepleri vardır. Sürekli ve çok miktarda yağmurun yağdığı, birbirine geçmiş ağaçlardan oluşan tropikal ormanlarda güneş ışığının bitkilerin her yerine eşit ulaşması oldukça zordur. Bu da ışığı yakalamak için gerekli olan yaprak yüzeyinin artırılmasını gerekli kılar. Güneş ışığının zor girdiği bu alanlarda bitkilerin besin üretebilmeleri için yaprak yüzeylerinin büyük olması hayati önem taşımaktadır. Çünkü bu özellikleri sayesinde tropik bitkiler değişik yerlerden, en fazla faydalanacak şekilde güneş ışığına ulaşmış olurlar.
Tam aksine kuru ve sert iklimlerde ise küçük yapraklar bulunur. Çünkü bu iklim şartlarında bitkiler için dezavantaj olan asıl nokta ısı kaybıdır. Ve yaprak yüzeyi genişledikçe su buharlaşması, dolayısıyla ısı kaybı artar. Bu yüzden ışık yakalayan yaprak yüzeyi, bitkinin su tasarrufu yapabilmesi için iktisatlı davranacak şekilde tasarlanmıştır. Çöl ortamlarında yaprak kısıtlaması aşırı seviyelere ulaşır. Örneğin kaktüslerde yaprak yerine artık dikenler vardır. Bu bitkilerde fotosentez etli gövdenin kendisinde yapılır. Ayrıca gövde suyun depolandığı yerdir.
Fakat su kaybının kontrol edilmesi için bu da tek başına yeterli değildir. Çünkü her ne kadar yaprak küçük olsa da gözeneklerin bulunması su kaybını devam ettirecektir. Bu yüzden buharlaşmayı dengeleyecek bir mekanizmanın varlığı zorunludur. Bitkiler de, fazla buharlaşmayı düzenleyen bir çıkış yoluna sahiptirler. Bünyelerindeki su kaybını, gözenek açıklığının kontrolü ile denetim altında tutarlar. Bunun için gözenek açıklıklarını (porları) genişletir veya daraltırlar. 
Yaprakların tek görevi fotosentez için ışığı hapsetmeye çalışmak değildir. Havadaki karbondioksidi yakalayıp onu fotosentezin oluştuğu yere ulaştırmaları da aynı derecede önemlidir. Bitkiler bu işlemi de yaprakların üzerinde yer alan gözenekler vasıtasıyla gerçekleştirirler.


Kusursuz Bir Tasarım: Gözenekler
Yaprakların üzerindeki bu mikroskobik delikler ısı ve su transferi sağlamak ve fotosentez için gerekli olan CO2`i atmosferden temin etmekle görevlidirler. Gözenek olarak adlandırılan bu delikler, gerektiğinde açılıp kapanabilecek bir yapıya sahiptirler. Gözenekler açıldığında yaprağın hücreleri arasında bulunan oksijen ve su buharı, fotosentez için gereken karbondioksit ile değiştirilir. Böylece üretim fazlalıkları dışarı atılırken, ihtiyaç duyulan maddeler değerlendirilmek üzere içeri alınmış olur. 
Gözeneklerin ilgi çekici yönlerinden biri, yaprakların çoğunlukla alt kısımlarında yer almalarıdır. Bu sayede, güneş ışığının olumsuz etkisinin en aza indirilmesi sağlanır. Bitkideki suyu dışarı atan gözenekler, eğer yaprakların üst kısımlarında yoğun olarak bulunsalardı, çok uzun süre güneş ışığına maruz kalmış olacaklardı. Bu durumda da bitkinin sıcaktan ölmemesi için gözenekler bünyelerindeki suyu sürekli olarak dışarı atacaklardı, böyle olunca da bitki aşırı su kaybından ölecekti. Gözeneklerin bu özel tasarımı sayesinde ise, bitkinin su kaybından zarar görmesi engellenmiş olur.
Yaprakların üst deri dokusu üzerinde çifter çifter yerleşmiş bulunan gözeneklerin biçimleri fasulyeye benzer. Karşılıklı içbükey yapıları, yaprakla atmosfer arasındaki gaz alışverişini sağlayan gözeneklerin açıklığını ayarlar. Gözenek ağzı denilen bu açıklık, dış ortamın koşullarına (ışık, nem, sıcaklık, karbondioksit oranı) ve bitkinin özellikle su ile ilgili iç durumuna bağlı olarak değişir. Gözenek ağızlarının açıklığı ya da küçük oluşu ile bitkinin su ve gaz alışverişi düzenlenir.
Dış ortamın tüm etkileri göz önüne alınarak düzenlenmiş olan gözeneklerin yapısında çok ince detaylar vardır. Bilindiği gibi dış ortam koşulları sürekli değişir. Nem oranı, sıcaklık derecesi, gazların oranı, havadaki kirlilik… Yapraklardaki gözenekler tüm bu değişken şartlara uyum gösterebilecek yapıdadırlar.
Bunu bir örnekle şöyle açıklayabiliriz. Şeker kamışı ve mısır gibi uzun süre sıcağa ve kuru havaya maruz kalan bitkilerde, gözenekler suyu muhafaza edebilmek için gün boyunca tamamen ya da kısmen kapalı kalırlar. Bu bitkilerin de gündüz fotosentez yapabilmek için karbondioksit almaları gerekir. Normal şartlar altında bunu sağlayabilmek için de gözeneklerinin olabildiğince açık olması gerekir. Bu imkansızdır. Çünkü böyle bir durumda bitki, sıcaklığa rağmen sürekli açık olan gözenekleri yüzünden devamlı su kaybeder ve bir süre sonra da ölür. Bu nedenle bitkinin gözeneklerinin kapalı olması gereklidir.
Fakat bu problem de çözülmüştür. Mısır ve şeker kamışı gibi sıcak bölgelerde yaşayan bitkiler, gözenekleri kapalı da olsa, yapraklarına karbondioksidi alabilmek için kimyasal pompalar kullanmaktadırlar.46 Bu kimyasal pompaların bir süre yokluğu durumunda CO2 temin edilemediği için bitki besin üretemeyecek ve ölecektir. Bu da yapraklardaki bu kompleks pompaların zaman içinde ortaya çıkan raslantılarla oluşmasının imkansız olduğunun bir göstergesidir. Bitkilerdeki bu sistem de diğerleri gibi ancak bütün parçaları eksiksiz olduğunda fonksiyonlarını yerine getirebilmektedir. Dolayısıyla, bitkilerdeki gözeneklerin de tesadüfler sonucu evrimleşerek ortaya çıkmış olmaları ihtimal dışıdır. Son derece özel bir yapısı olan gözenekler de görevlerini en hassas biçimde yerine getirecek şekilde özel olarak tasarlanmışlar, yani yaratılmışlardır.

Evrimcilere Göre Yaprakların Oluşumu
Görüldüğü gibi küçük yeşil bir cisme son derece kusursuz bir şekilde sığdırılmış kompleks yapılar vardır. Yapraklardaki bu kompleks sistem milyonlarca yıldır kusursuzlukla işlemektedir. Peki bu sistemler nasıl olup da bu kadar küçük bir alana sığdırılmışlardır? Yapraklardaki kompleks tasarım nasıl oluşmuştur? Bu kadar mükemmel ve örneksiz bir tasarımın kendi kendine oluşması mümkün müdür? 
Bu sorular evrim teorisini savunanlara sorulacak olursa alınacak cevaplar her zamankilerden farklı olmayacaktır. Hiçbir mantığı olmayan, kendi içinde sürekli çelişen açıklamalarla çeşitli varsayımlar ortaya atacaklardır. Kurdukları hayali evrim senaryolarıyla sayısız çeşitlilikteki bitkinin, ağacın, çiçeğin, deniz bitkilerinin, otların, mantarların "nasıl ortaya çıktıkları" sorusuna cevap vermeye çalışacaklar, fakat başaramayacaklardır. 
Evrimcilerin, yaprakların oluşumu ile ilgili olarak ortaya attıkları teoriler incelendiğinde bunların son derece anlamsız, hatta gülünç denebilecek iddialarla dolu oldukları görülür. Bunlardan bir tanesine (Telome teorisine) göre yapraklar, ilkel damarlı bitkilerin ayrılmış dallarının birleşmesi ve yassılaşması ile gelişmiştir.47 Sorular sorarak bu temelsiz iddiayı inceleyelim:
- Bu dallar niçin birleşme ve yassılaşma gereği duymuşlardır? 
- Bu birleşme ve yassılaşma nasıl bir süreç sonucunda gerçekleşmiştir, 
-Dallar ne tür tesadüfler sonucunda yapı ve tasarım olarak tamamen farklı yapıdaki yapraklara dönüşmüşlerdir? 
-İlkel damarlı bitkilerden nasıl olup da binlerce, milyonlarca çeşitteki bitkiler, ağaçlar, çiçekler, otlar ortaya çıkmıştır? 
Evrimcilerin bu soruların hiçbirisi hakkında mantıklı ve bilimsel bir cevapları yoktur. Evrimciler her konuda olduğu gibi bitkilerin varoluşu konusunda da bütünüyle hayal gücüne dayalı senaryolardan başka bir açıklama üretemezler.
Bu konudaki başka bir teori olan "Enation Teorisi"ne göreyse yapraklar, bitki saplarının tomurcukları ile oluşmuştur.48 
Bu iddialarını da yine sorular sorarak inceleyelim:
Nasıl olup da gövdenin belirli yerlerinde bir yaprak oluşturmak üzere tomurcuk gibi bir yapı oluşmuştur? 
Daha sonra tomurcuklar nasıl yapraklara dönüşmüşlerdir? Üstelik de sayısız çeşide sahip kusursuz bir yapı olan yapraklara… 
Biraz daha geriye gidelim. Tomurcukların çıktığı dallar nasıl oluşmuştur? 
Tomurcukların bazı cinslerde yapraklara, bazılarındaysa çiçeğe ve zamanla meyveye dönüşmesini sağlayan kompleks mekanizmalar rastlantılarla nasıl oluşmuştur? Bunlara benzer soruların da evrimcilerce verilmiş hiçbir bilimsel cevapları yoktur.
Gerçekte her iki teorinin de özetle anlatmak istediği şudur: Bitkiler evrimcilere göre tesadüfen gelişen olaylar sonucunda ortaya çıkmışlardır. Tesadüfen tomurcuklar, dallar oluşmuş, bir başka tesadüf olmuş klorofil kloroplastın içinde var olmuş, başka tesadüflerle yapraktaki tabakalar oluşmuş, tesadüfler tesadüfleri kovalamış ve sonunda kusursuz ve son derece özel yapısıyla yapraklar ortaya çıkmıştır.
Bu arada yaprakta tesadüfen oluştuğu iddia edilen bu yapıların hepsinin aynı anda ortaya çıkması gerektiği de göz ardı edilmemesi gereken bir gerçektir. Evrimcilere göre yapraktaki mekanizmaların tümü kendi kendilerine gelişen tesadüflerle ama aynı anda ortaya çıkmışlardır. Yine aynı evrimci mantığın devamı, kullanılmayan organların ya da sistemlerin kaybolmasını öngörmektedir. Yapraktaki düzeneklerin hepsi birbirine bağlı olduğundan, bir tanesinin tesadüfler sonucu ortaya çıkmış olması bir anlam ifade etmeyecektir. Çünkü evrimci mantığın ikinci aşamasına göre bu düzenek, işe yaramadığından dolayı ortadan kalkacaktır. Bu yüzden bitkinin yaşamını sürdürebilmesi için kökündeki, dallarındaki ve yapraklarındaki kompleks sistemlerin hepsinin aynı anda var olması gerekmektedir.
Yeryüzündeki her canlıda olduğu gibi bitkilerde de tam anlamıyla kusursuz sistemler kurulmuştur ve ilk yaratıldıkları andan itibaren özelliklerinde hiçbir değişiklik olmadan günümüze kadar gelmişlerdir. Yapraklarını dökmelerinden, kendilerini güneşe çevirmelerine, yeşil renklerinden, gövdelerindeki odunsu yapıya, köklerinin varlığından meyvelerinin oluşmasına kadar olan tüm yapıları örneksizdir. Daha iyi sistemlerin oluşturulması hatta benzerlerinin oluşturulması (mesela fotosentez işlemi) günümüz teknolojisiyle mümkün bile değildir.
Bu komplekslik de yaprakların tesadüfen oluşamayacağının delillerinden biridir. Yapraklar özel olarak bitkilerin besin üretmesi, solunum yapmaları gibi ihtiyaçlar için tasarlanmış yapılara sahiptirler. Özel bir tasarımın varlığı, bir tasarlayıcının varlığını kanıtlar. Tasarımdaki detaylar ve kusursuzluk da tasarımcının aklını, bilgisini ve sanatının gücünü bize tanıtır. Yaprakları en mükemmel tasarımlarıyla yaratan hiç kuşkusuz ki tüm alemlerin Rabbi olan Allah`tır.




Fotosentez Mucizesi
Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. 
Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. 
İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. 
Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur.



Sır Dolu Bir Fabrika: Kloroplast
Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. 
Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler.49 
Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir.
Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. 


Aydınlık Evre
Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur.50 
Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid`in yapısının incelenmesinde fayda vardır. 
"Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid`in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid`in içinde yer alan bir grup klorofil olarak tanımlanabilir.
Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3`ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır.
Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur.51 
Ortaya çıkan protonlar thylakoid`in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. 
Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. 




Karanlık Evre
Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler.52 
Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır.
Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır.
Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. 
Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider.

Fotosentez İçin Gerekli Olan Her şey Gibi Güneş Işığı da Özel Olarak Ayarlanmıştır
Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. 
Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim:
Güneş`in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? 
Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır. 
Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır:
Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır.
Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş`i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş`e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz.53 
Kısacası fotosentez işleminin gerçekleşebilmesi için şu anki şartların olması zorunludur. İşte bu noktada akla gelebilecek bir soruyu daha değerlendirmekte fayda vardır: 
Zaman içinde fotosentez işleminin sıralamasında ya da moleküllerin görevinde herhangi bir değişiklik olabilir miydi? 
Bu soruya, doğadaki hassas dengelerin tesadüfler sonucunda oluştuğunu iddia eden evrim savunucularının vereceği cevaplardan bir tanesi, "başka türlü bir ortam olsaydı, canlılar o ortamlara da uyum sağlayacakları için bitkiler de o ortama göre fotosentez yapabilirlerdi" olacaktır. Oysa bu tamamen yanlış bir mantıktır. Çünkü bitkilerin fotosentez yapabilmeleri için güneşin yaydığı ışıkların şu anki uyum içinde olmaları gerekmektedir. Bu mantığın yanlış olduğunu gerçekte bir evrimci olan astronom George Greenstein da şu şekilde belirtmektedir:
Belki insan burada bir tür adaptasyonun gerçekleştiğini düşünebilir: Bitkinin yaşamının Güneş ışığının özelliklerine uyum sağladığını varsaya3moleküller ışığın çok belirli bazı renklerini absorbe edebilirler. Işığın absorbe edilmesi işlemi, moleküllerin içindeki elektronların yüksek enerji seviyelerine olan duyarlılıklarıyla ilgilidir ve hangi molekülü ele alırsanız alın, bu işi gerçekleştirmek için gereken enerji aynıdır. Işık, fotonlardan oluşur ve yanlış enerji seviyesinde foton, hiçbir şekilde absorbe edilemez... Kısacası yıldızların fiziği ile, moleküllerin fiziği arasında çok iyi bir uyum vardır. Bu uyum olmasa, yaşam imkansız olurdu.54 
Tekrar önemle belirtmek gerekirse; bitkilerin fotosentez yapabilmeleri için güneşin yaydığı belirli aralıktaki ışığın varlığı şarttır. Yaşam için zorunlu olan bu uyum hiçbir şekilde rastlantılarla açıklanamayacak kusursuzlukta bir uyumdur. Yeryüzündeki her şeye hakim olan ve üstün bir aklın sahibi olan Allah, tüm bunları birbirine uygun olarak yaratmıştır.




Fotosentez Olayı Tesadüfen Oluşamaz
Bütün bu apaçık gerçeklere rağmen yine de evrim teorisini savunmaya devam edenler için, sorular sorarak bu sistemin tesadüfen oluşamayacağını bir kere daha görelim. Boyutu mikroskobik ölçülerle tanımlanan bir alanda kurulmuş bu örneksiz mekanizmayı tasarlayan kimdir? Öncelikle böyle bir sistemi bitki hücrelerinin plandığını yani bitkilerin düşünerek planlar yaptığını varsayabilir miyiz? Elbette ki böyle bir şeyi varsayamayız. Çünkü, bitki hücrelerinin tasarlaması, akletmesi gibi bir şey söz konusu değildir. Hücrenin içine baktığımızda gördüğümüz kusursuz sistemi yapan hücrenin kendisi değildir. Peki öyleyse bu sistem düşünebilen yegane varlık olan insan aklının bir ürünü müdür? Hayır değildir. Milimetrenin binde biri büyüklüğünde bir yere yeryüzündeki en inanılmaz fabrikayı kuranlar insanlar da değildir. Hatta insanlar bu mikroskobik fabrikanın içinde olan bitenleri gözlemleyememektedirler bile. 
Bu gibi soruların cevaplarının niçin "hayır" olduğu, evrimcilerin iddialarıyla birlikte incelendiğinde, bitkilerin nasıl ortaya çıktığı konusu daha iyi açıklığa kavuşacaktır. 
Evrim teorisi bütün canlıların aşama aşama geliştiğini, basitten komplekse doğru bir gelişim olduğunu iddia eder. Fotosentez sistemindeki mevcut parçaları belli bir sayıyla sınırlayabildiğimizi varsayarak bu iddianın doğru olup olmadığını düşünelim. Örneğin fotosentez işleminin gerçekleşmesi için gerekli olan parçaların sayısının 100 olduğunu varsayalım (gerçekte bu sayı çok daha fazladır). Varsayımlara devam ederek, bu 100 parçanın bir iki tanesinin evrimcilerin iddia ettikleri gibi tesadüfen, kendi kendine oluştuğunu varsayalım. Bu durumda geriye kalan parçaların oluşması için milyarlarca yıl beklenmesi gerekecektir. Oluşan parçalar bir arada bulunsalar bile diğerleri olmadığı için bir işe yaramayacaklardır. Tek biri olmadığında diğerleri işlevsiz olan bu sistemin diğer parçaların oluşumunu beklemeleri imkansızdır. Dolayısıyla canlılara ait tüm sistemler gibi, karmaşık bir sistem olan fotosentez de evrimin öne sürdüğü gibi, zaman içinde, tesadüflerle, yavaş yavaş oluşan parçaların art arda eklenmesiyle meydana gelmesi akıl ve mantıkla bağdaşan bir iddia değildir.
Bu iddianın çaresizliğini fotosentez işleminde gerçekleşen bazı aşamaları kısaca hatırlayarak görebiliriz. Öncelikle fotosentez işleminin gerçekleşebilmesi için mevcut bütün enzimlerin ve sistemlerin aynı anda bitki hücresinde bulunması gereklidir. Her işlemin süresi ve enzimlerin miktarı tek bir seferde en doğru biçimde ayarlanmalıdır. Çünkü gerçekleştirilen reaksiyonlarda oluşabilecek en ufak bir aksaklık, örneğin işlem süresi, reaksiyona giren ısı veya hammadde miktarında küçük bir değişiklik olması, reaksiyon sonucunda ortaya çıkacak ürünleri bozacak ve yararsız hale getirecektir. Bu sayılanların herhangi bir tanesinin olmaması durumunda da sistem tamamen işlevsiz olacaktır. 
Bu durumda akla bu işlevsiz parçaların, sistemin tümü oluşana kadar nasıl olup da varlıklarını sürdürdükleri sorusu gelecektir. Ayrıca boyut küçüldükçe, o yapıdaki sistemin üzerindeki aklın ve mühendisliğin kalitesinin arttığı da bilinen bir gerçektir. Bir mekanizmadaki boyutun küçülmesi bize o yapı üzerinde kullanılan teknolojinin gücünü gösterir. Günümüz kameralarıyla seneler önce kullanılan kameralar arasında bir karşılaştırma yapıldığında bu gerçek daha net görülecektir. Bu gerçek, yapraklardaki kusursuz yapının önemini daha da arttırmaktadır. İnsanların büyük fabrikalarda dahi yapamadıkları fotosentez işlemini bitkiler nasıl olup da bu mikroskobik fabrikalarında gerçekleştirmektedirler? 
İşte bu ve benzeri sorular evrimcilerin hiçbir tutarlı açıklama getiremedikleri sorulardır. Buna karşın, çeşitli hayali senaryolar üretirler. Üretilen bu senaryolarda başvurulan ortak taktik, konunun demagojiler ve kafa karıştırıcı teknik terim ve anlatımlarla boğulmasıdır. Olabildiğince karışık terimler kullanarak bütün canlılarda çok açık görülen bir gerçeği, "Yaratılış Gerçeği"ni örtbas etmeye çalışırlar. Neden ve nasıl gibi sorulara cevap vermek yerine, konu hakkında ayrıntılı bilgiler ve teknik kavramlar sıralayıp sonuna bunun evrimin bir sonucu olduğunu eklerler. 
Bununla birlikte en koyu evrim taraftarları bile, çoğu zaman bitkilerdeki mucizevi sistemler karşısında hayretlerini gizleyememektedirler. Buna örnek olarak Türkiye`nin evrimci profesörlerinden Ali Demirsoy`u verebiliriz. Prof. Demirsoy, fotosentezdeki mucizevi işlemleri vurgulayarak, bu kompleks sistemin karşısında şöyle bir itirafta bulunmaktadır:
Fotosentez oldukça karmaşık bir olaydır ve bir hücrenin içerisindeki organelde ortaya çıkması olanaksız görülmektedir. Çünkü tüm kademelerin birden oluşması olanaksız, tek tek oluşması da anlamsızdır.55 
Fotosentez işlemindeki bu kusursuz mekanizmalar şimdiye kadar gelmiş geçmiş bütün bitki hücrelerinde vardır. En sıradan gördüğünüz bir yabani ot bile bu işlemi gerçekleştirebilmektedir. Reaksiyona her zaman aynı oranda madde girer ve çıkan ürünler de hep aynıdır. Reaksiyon sıralaması ve hızı da aynıdır. Bu istisnasız bütün fotosentez yapan bitkiler için geçerlidir. 
Bitkiye akletme, karar verme gibi vasıflar vermeye çalışmak elbette ki mantıksızdır. Bunun yanı sıra bütün yeşil bitkilerde var olan ve kusursuz bir şekilde işleyen bu sisteme "tesadüfler zinciri ile oluştu" şeklinde bir açıklama getirmek de her türlü mantıktan uzak bir çabadır.
İşte bu noktada karşımıza apaçık bir gerçek çıkar. Olağanüstü kompleks bir işlem olan fotosentez bilinçli olarak tasarlanmıştır, yani Allah tarafından yaratılmıştır. Bu mekanizmalar bitkiler ilk ortaya çıktıkları andan itibaren vardır. Bu kadar küçük bir alana yerleştirilmiş olan bu kusursuz sistemler bize kendilerini tasarlayanın gücünü gösterirler. 

Fotosentezin Sonuçları
Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. 
Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar.56 Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. 
Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. 
Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir.56 
Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar.
Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır.

Bitkilerdeki Besinler Fotosentez Sonucunda Oluşur
Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. 
Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi?
Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. 
Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. 
Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur.
Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir. 
Karpuzların çekirdeklerinin dizilişlerinde de bir hata görülmez. Her bir çekirdeğin içine o karpuzun binlerce yıl sonraki nesillerine ulaşacak bilgi kodlanmıştır. Her çekirdek özel, koruyucu bir kabukla kaplıdır. Bu, içindeki bilginin bozulmasını engellemeye yönelik hazırlanmış mükemmel bir tasarımdır. Kabuk çok sert değil, çok yumuşak da değil, ideal bir sertlikte ve esnekliktedir. Kabuktan sonra çekirdeğin içinde ikinci bir kat vardır. Kabuğun alt ve üst parçalarının yapışma yerleri bellidir. Bu yapışma yerleri çekirdeklerin tutunabilmesi için özel olarak yapılmıştır. Çekirdek, bu yapı sayesinde sadece uygun nem ve sıcaklığa kavuşunca hemen açılır. Çekirdeğin içindeki o dümdüz bembeyaz bölüm kısa bir süre sonra çimlenerek, yemyeşil bir yaprağa dönüşüverir. 
Karpuzun bir de kabuğunun yapısını düşünelim. Bu pürüzsüz kabuğu ve kabuğun üstündeki cilalı yapıyı oluşturanlar hep hücrelerdir. Bu pürüzsüz cilalı yapının ortaya çıkması için, hücrelerin her birinin kabuğun yapısındaki mumsu maddeyi aynı seviyede salgılamaları gerekmektedir. Ayrıca kabuğu pürüzsüz ve yuvarlak yapan da karpuz hücrelerinin dizilişindeki mükemmelliktir. Bunu sağlayabilmek için hücrelerin her birinin yer alması gereken noktayı bilmesi gerekir. Aksi takdirde bu pürüzsüzlük, karpuzun dış yapısındaki bu kusursuz yuvarlaklık oluşmayacaktır. Görüldüğü gibi karpuzu oluşturan hücreler arasında kusursuz bir uyum vardır.
Bu şekilde düşünerek yeryüzündeki bitkilerin tümünü inceleyebiliriz. Bu incelemenin sonunda elde ettiğimiz sonuç bitkilerin insanlar ve tüm canlılar için özel olarak tasarlanmış yani yaratılmış oldukları sonucu olacaktır. 
Alemlerin Rabbi olan Allah tüm besinleri canlılar için var etmiştir ve bunları, her birinin tadı, kokusu, faydası farklı olacak şekilde yaratmıştır:
Yerde sizin için üretip-türettiği çeşitli renklerdekileri de (faydanıza verdi). Şüphesiz bunda, öğüt alıp düşünen bir topluluk için ayetler vardır. (Nahl Suresi, 13)
Ve birbiri üstüne dizilmiş tomurcuk yüklü yüksek hurma ağaçları da. Kullara rızık olmak üzere. Ve onunla (o suyla) ölü bir şehri dirilttik. İşte (ölümden sonra) diriliş de böyledir. (Kaf Suresi, 10-11)




Bitkiler Serindir, Ama Neden?
Aynı yerde bulunan bitki ve bir taş parçası, eşit miktarda güneş enerjisi almalarına rağmen aynı derecede ısınmazlar. Güneş altında kalan her canlıda mutlaka olumsuz bir etki oluşur. Öyleyse bitkilerin sıcaktan minimum derecede etkilenmelerini sağlayan nedir? Bitkiler bunu nasıl başarırlar? Muazzam bir sıcaklıkta, bütün yaz boyunca yaprakları güneşin altında kavrulmasına rağmen bitkilere neden hiçbir şey olmamaktadır? Ayrıca bitkiler kendi bünyelerindeki ısınmanın haricinde, dışarıdan da ısı alarak dünyadaki ısı dengesini de sağlarlar. Bu ısı tutma işlemini yaparken kendileri de bu sıcağa maruz kalırlar. Peki gittikçe artan bu sıcaktan etkilenmek yerine, bitkiler nasıl olup da dışarının da ısısını almaya devam edebilmektedirler? 
Yapıları itibariyle sürekli güneş altında olan bitkiler, doğal olarak diğer canlılara oranla daha fazla miktarda suya ihtiyaç duyarlar. Bitkiler aynı zamanda yapraklarında oluşan terleme vasıtasıyla da sürekli su kaybederler. Daha önceki bölümlerde de değinildiği gibi bu su kaybını önlemek için, yaprakların güneşe dönük olan üst yüzleri çoğunlukla "kütiküla" adı verilen bir tür su geçirmez, koruyucu cilayla örtülüdür. Bu sayede yaprakların üst yüzeylerindeki su kaybı önlenmiş olur. 
Peki ya alt yüzleri? Bitki bu bölümden de su kaybettiği için gaz alış-verişini sağlamakla görevli özel deri hücreleri olan gözenekler genellikle yaprağın alt yüzünde bulunurlar. Gözeneklerin açılıp kapanması bitki tarafından karbondioksit alıp oksijen vermeye yetecek, ancak su kaybına yol açmayacak biçimde denetlenir. 
Bunların yanı sıra bitkiler ısıyı farklı şekillerde dağıtırlar. Bitkilerde iki önemli ısı dağıtım sistemi bulunmaktadır. Bunlardan birincisi, yaprağın ısısı eğer çevrenin ısısından daha fazlaysa, hava dolaşımının yapraktan dış ortama doğru olmasıdır. Isı naklinden kaynaklanan hava değişimi, sıcak havanın soğuk havadan daha az yoğun olması nedeniyle, havanın yükselmesine dayanır. Bu yüzden yaprakların yüzeyinde ısınan hava yükselir ve yüzeyden ayrılır. Soğuk hava daha yoğun olduğu için yaprağın yüzeyine doğru iner. Böylece sıcaklık azaltılmış ve yaprak serinlemiş olur. Bu işlem yaprağın yüzey ısısı çevredeki ısıdan yüksek olduğu müddetçe devam eder. Çok kuru koşullarda yani çöllerde dahi bu durum değişmez.
Bitkilerdeki ısı dağıtım sistemlerinden diğeri de yapraklardan su buharı verilerek terlemenin sağlanmasıdır. Bu terleme sayesinde su buharlaşırken bitkinin serinlemesi de sağlanmış olur. 
Bu dağıtım sistemleri bitkilerin yaşadıkları ortamın şartlarına uygun olacak şekilde ayarlanmıştır. Her bitki neye ihtiyacı varsa o sisteme sahiptir. Son derece karmaşık bir yapısı olan bu sistemin dağılımı tesadüfen gerçekleşmiş olabilir mi? Bu sorunun cevabını verebilmek için çöl bitkilerini ele alalım. Çöllerdeki bitkilerin yaprakları genelde çok kalındır. Suyu buharlaştırmaktan daha çok, muhafaza etme yönünde dizayn edilmişlerdir.57 Bu bitkiler için ısı dağıtma işlemini buharlaşma ile gerçekleştirmek ölümcül bir sonuç getirecektir. Çünkü çöl ortamında kaybedilen suyun telafisi mümkün değildir. Görüldüğü gibi bu bitkiler ısılarını her iki yolla da dağıtabilecekken sadece bu yollardan birini, üstelik de yaşamaları için tek geçerli olan yolu kullanmaktadırlar. Çünkü tasarımları çöl ortamına göre yapılmıştır. Bunun tesadüflerle açıklanması ise mümkün değildir. 
Bitkilerin sahip oldukları bu serinleme mekanizmaları olmasaydı, güneş altındaki birkaç saat bile bitkiler için ölümcül olurdu. Öğle saatlerinde bir dakika kadar direkt olarak alınan güneş ışığı, bir santimetrekarelik yaprak yüzeyinin ısısını 37oC`ye kadar yükseltebilir. Bitki hücreleriyse, bünyelerindeki sıcaklık 50-60oC`ye çıktığında ölmeye başlarlar, yani bitkinin ölmesi için öğle vakti 3 dakika kadar güneş ışığı alması yeterlidir. İşte bitkiler öldürücü sıcaklıklardan bu iki mekanizma sayesinde korunabilirler.58 Bitkilerin ısı dağıtımında kullandıkları buharlaşma olayı aynı zamanda atmosferdeki su buharı dengesi açısından da büyük bir önem taşır. Çünkü bitkilerdeki bu buharlaşma, yüksek miktarlardaki suyun düzenli olarak atmosfere ulaştırılmasını sağlar. Bitkilerin bu faaliyetleri bir nevi su mühendisliği olarak da nitelendirilebilir. Bin metrekarelik ormanlık bir alandaki ağaçlar 7.5 ton suyu rahatlıkla havaya verebilirler. Bu muazzam bir rakamdır. Bu özellikleriyle bitkiler topraktaki suyu vücutlarından geçirerek atmosfere ulaştıran dev su pompaları gibidirler.59 Bu son derece önemli bir görevdir. Şayet, bu özellikleri olmasaydı, suyun yer ile gök arasındaki çevrimi bugünkü gibi gerçekleşemeyecekti, ki bu da yeryüzündeki dengelerin bozulmasına neden olacaktı.
Dış yüzeyleri odunsu ve kuru bir maddeyle kaplı olmasına rağmen, bitkiler bünyelerinden tonlarca su geçirirler. Bu suyu topraktan alırlar ve ileri teknolojiyle çalıştırdıkları kendi fabrikalarında birtakım yerlerde kullandıktan sonra, aldıkları suyun büyük bir bölümünü arıtılmış su olarak doğaya verirler, başka bir deyişle trilyonlarca tonluk suyu otomasyon düzenleriyle kontrollü olarak topraktan alıp, arıttıktan sonra kendilerine özgü sistemleriyle doğaya adeta pompalarlar. Bunu yaparken aynı zamanda aldıkları suyun bir kısmını da, besin üretiminde hidrojeni kullanmak amacıyla parçalarlar.60 
Bizim yapraklardaki terleme ya da ağaçların bulunduğu ortamdaki nemlilik olarak nitelendirdiğimiz olaylar, aslında yeryüzünde yaşamın devamlılığı açısından hayati önem taşıyan bu faaliyetlerin bir sonucu olarak gerçekleşir. 
Bitkilerin bu işlemlerinde de karşımıza çıkan, tek bir parçası çekilip alınsa anında felç olacak ve çalışamayacak mükemmellikte bir sistemdir. Hiç kuşkusuz ki bu düzeni tasarlayan ve eksiksiz biçimde bitkilere yerleştiren de Rahman ve Rahim olan, her türlü yaratmayı bilen Allah`tır:
O Allah ki, Yaratan`dır, (en güzel bir biçimde) kusursuzca var edendir, `şekil ve suret` verendir. En güzel isimler O`nundur. Göklerde ve yerde olanların tümü O`nu tesbih etmektedir. O, Aziz, Hakim`dir. (Haşr Suresi, 24)


En Küçük Temizlik Cihazı, Yaprak
Bitkilerin diğer canlılara verdiği hizmetler, sadece havaya oksijen ve su vermekle kısıtlı değildir. Yapraklar aynı zamanda son derece gelişmiş bir arıtma ve temizleme cihazı gibi faaliyet gösterirler. Günlük yaşamımızda sıkça kullandığımız temizlik cihazları, konunun uzmanları tarafından uzun süren çalışmalar sonucunda, yoğun emek ve para harcanarak üretilirler ve faaliyete geçirilirler. Bunların kullanımları süresince ve kullanım sonrasında pek çok teknik desteğe ve bakıma ihtiyaç vardır. Üretimlerinin sonunda ortaya çıkardıkları atık maddeler ise ayrı bir sorundur. Bunlar temizlik aletleri hakkında oldukça özet bilgilerdir. Bunlardan başka günlük olarak ortaya çıkan aksamalar ya da bozukluklar, bunlar için gerekli olan eleman ve alet takviyeleri, ihtiyaçlara göre yapılan yenilemeler gibi pek çok işlem de gerekecektir.
Görüldüğü gibi küçük bir arıtma cihazında bile yüzlerce detaya dikkat etmek gerekir. Oysa bu cihazlarla aynı işi yapan bitkiler sadece su ve güneş ışığı karşılığında, aynı temizleme hizmetini daha kaliteli ve garantili bir biçimde verirler. Üstelik atık madde diye bir sorunları da yoktur, çünkü onların havayı temizledikten sonra ürettikleri atık maddeler, tüm canlıların temel ihtiyacı olan oksijendir!
Ağaçların yaprakları, havadaki kirletici maddeleri yakalayan mini filtrelere sahiptir. Yaprak üzerinde gözle görülmeyen binlerce tüy ve gözenekler vardır. Gözenekler tanecikler halindeki havayı kirleten maddeleri tutarlar ve sindirilmek üzere bitkinin diğer bölümlerine gönderirler. Yağmur yağınca da bu maddeler su ile toprağa ulaşırlar. Bu çok kalın bir madde değildir. Yaprak üzerindeki bu maddeler sadece bir film kalınlığındadırlar; fakat yeryüzünde milyonlarca yaprak olduğu düşünülürse, yapraklar tarafından tutulan kirli madde miktarının küçümsenemeyecek kadar çok olduğu görülür. Örneğin 100 yaşındaki bir kayın ağacının yaklaşık 500 bin tane yaprağı vardır. Bu yaprakların tuttuğu kir miktar tahminlerin çok ötesindedir. Bir dönüm içindeki çınar ağaçları yaklaşık 3.5 ton, çam ağaçları ise yaklaşık 2.5 ton kirletici maddeyi tutabilirler. Tutulan bu maddeler ilk yağmurla birlikte toprağa geri dönerler. Bir yerleşim alanından 2 km uzaklıkta bulunan bir orman havasının, yerleşim alanının havasına oranla %70 oranında daha az toz parçacıkları içerdiği görülmüştür. Hatta ağaçlar yapraksız oldukları kış dönemlerinde bile havadaki tozları %60 oranında filtre ederler.
Ağaçlar mevcut yaprak ağırlıklarının 5-10 katına kadar toz tutabilirler, ağaçlı bir alandaki bakteri oranı ile ağaçsız bir alandaki bakteri miktarları oldukça büyük bir farklılık gösterir.61 Bunlar son derece önemli rakamlardır. 
Yapraklarda gerçekleşen olayların hepsi başlı başına birer mucize niteliğindedir. Mikro seviyede tasarlanmış bir fabrika gibi mükemmel bir tasarım ile oluşturulan yeşil bitkilerdeki bu sistemler Alemlerin Rabbi olan Allah`ın yaratmasındaki kusursuzluğun delilleridir ve yüz binlerce yıldır hiçbir değişiklik ya da hiçbir bozukluk olmadan günümüze kadar aynı mükemmellikte gelmişlerdir.




Herkes İçin Tanıdık Bir Manzara: Yaprak Dökümü
Bitkiler için—özellikle de besin üretiminin yapıldığı yapraklar için—güneş ışığı çok önemlidir. Sonbaharın gelmesiyle birlikte havalar soğumaya, gündüzler kısalmaya başlar ve dünyaya gelen güneş ışığında azalma olur. Bu azalma bitkide değişikliklere sebep olur ve yapraklarda yaşlanma programı yani yaprak dökümü başlar.
Ağaçlar yapraklarını dökmeden önce, yapraktaki bütün besleyici maddeleri emmeye başlarlar. Amaçları potasyum, fosfat, nitrat gibi maddelerin düşen yapraklarla birlikte yok olmasını engellemektir. Bu maddeler, ağaç kabuğunun katmanlarının ve gövdenin ortasından geçen iliğe yönelir ve burada depolanırlar. İlikte toplanmaları bu maddelerin ağaç tarafından kolay emilmesini sağlar.62 
Yaprak dökümü ağaçlar için bir zorunluluktur çünkü soğuk havalarda topraktaki su gitgide katılaşır ve emilmesi zorlaşır. Buna karşın yapraklardaki terleme havanın soğumasına rağmen devam etmektedir. Suyun azaldığı bir dönemde sürekli terleme yapan yaprak, bitki için fazlalık olmaya başlamıştır. Zaten yaprağın hücreleri soğuk kış günlerinde don ile karşılaşıp parçalanacaktır. Bu yüzden ağaç erken davranıp kış gelmeden yapraktan kurtulur, böylece zaten kıt olan su rezervlerini boş yere kullanmamış olur.63 
Sadece fiziksel bir işlem gibi görünen yaprak dökümü aslında pek çok kimyasal olayın arka arkaya gelmesiyle gerçekleşir. 
Yaprak ayasında yer alan hücrelerde, ışığa duyarlı ve bitkilere renk veren moleküller yani "fitokromlar" vardır. Bitkinin, gecelerin süresinin uzadığını ve böylece yapraklara daha az güneş ışığı gittiğini fark etmesini sağlayan işte bu moleküllerdir. Fitokromlar bu değişimi algıladıklarında yaprağın içinde çeşitli değişimlere sebep olurlar ve yaprağın yaşlanma programını başlatırlar..64 
Yapraklardaki yaşlanmanın ilk işaretlerinden biri, yaprak ayası hücrelerindeki etilen üretiminin başlamasıdır. Etilen gazı yaprağa yeşil rengini veren klorofilin yıkımını başlatır yani ağaç yapraklarındaki klorofili geri çeker. Yaprak dökülmesini geciktiren bir büyüme hormonu olan oksin maddesinin üretimini engelleyen de etilen gazıdır. Klorofilin yıkımının başlamasıyla birlikte yaprak güneşten daha az enerji alır ve daha az şeker üretir. Ayrıca o güne kadar baskı altına alınmış, yapraklardaki sıcak renklerin oluşmasına sebep olan karotenoidler kendilerini gösterirler ve bu şekilde yapraklarda renk değişimi başlar.65
Bir süre sonra etilen gazı yaprağın her tarafına yayılır ve yaprak sapına geldiğinde burada bulunan küçük hücreler şişmeye başlayıp, sapta bir gerginleşmeye neden olurlar. Yaprak sapının gövdeye bağlandığı bölümde bulunan hücrelerin miktarı artar ve özel enzimler üretmeye başlarlar. İlk olarak selülaz enzimleri selülozdan oluşan çeperleri parçalarlar, daha sonra pektinaz enzimleri hücreleri birbirine bağlayan pektin tabakasını parçalarlar. Giderek artan bu gerginliğe yaprak dayanamaz ve sapın dış tarafından içeriye doğru yarılmaya başlar.66
Buraya kadar anlattığımız bu işlemler yapraktaki besin üretiminin durması ve yaprağın sapından kopmaya başlaması olarak özetlenebilir. Genişlemeye devam eden yarığın etrafında çok hızlı değişimler yaşanır ve hücreler hemen mantarözü üretmeye başlarlar. Bu madde, selüloz çepere yavaş yavaş yerleşerek onun güçlenmesini sağlar. Bütün bu hücreler, arkalarında mantar tabakasının yerini alan büyük bir boşluk bırakarak ölürler..67 
Buraya kadar anlatılanlar tek bir yaprağın düşmesi için birbirine bağlantılı birçok olayın gerçekleşmesi gerektiğini göstermektedir. Fitokromların güneş ışınlarının azaldığını tespit edebilmelerinin, yaprağın düşmesi için gerekli olan tüm enzimlerin uygun zamanlarda devreye girmelerinin, tam sapın kopacağı yerde hücrelerin mantarözü üretmeye başlamasının ne derece olağanüstü bir işlemler zinciri olduğu ortadadır. Art arda işleyen ve her aşaması planlı ve birbiriyle bağlantılı olan bu kusursuz işlemler serisinin "rastlantı" ile açıklanması mümkün değildir. Bütün bu işlemlerdeki zamanlama son derece yerindedir. Yaprak dökümü planı kusursuz bir şekilde işlemektedir.
Yaprak gövdeden tamamen ayrıldığı için, iletim borularından öz su alamaz, bu yüzden yaprağın tutunduğu yer ile bağı gittikçe zayıflar. Biraz hızlı esen bir rüzgar bile yaprak sapını koparmaya yeterli olur.
Toprağa düşen ölü yapraklarda, böceklerin, mantarların ve bakterilerin yararlanabileceği besin maddeleri bulunur. Bu besin maddeleri, mikroorganizmalar tarafından değişime uğratılırlar ve toprağa karışırlar. Ağaçlar da bu maddeleri kökleri aracılığıyla topraktan tekrar besin olarak geri alabilirler.



EŞSİZ DAĞITIM SİSTEMİ: BİTKİ GÖVDESİ
En küçük otsu bir bitkiden dünyadaki en yüksek ağaçlara kadar her bitki topraktan kökleri vasıtası ile aldığı mineralleri ve suyu en uçtaki yaprakları da dahil olmak üzere her yere dağıtmak zorundadır. Bu, bitkiler için son derece önemli bir ihtiyaçtır çünkü su ve mineraller bitkinin en fazla ihtiyaç duyduğu maddelerdir.
Fotosentez işlemi de dahil olmak üzere bitkiler tüm faaliyetlerinde suya sürekli ihtiyaç duyarlar. Çünkü bitkiler,
- hücrelerinin canlılığını ve gerginliğini,
- fotosentez işlemini,
- topraktaki erimiş besinlerin alınmasını,
- bitki içinde bu besinlerin değişik yerlere taşınmasını,
- ve sıcak iklimlerde, yapraklarının üzerinde serinletici etki yaparak sıcaktan zarar görmemeleri gibi son derece hayati işlemlerini sadece suyu kullanarak yerine getirirler.
Peki toprağın derinliklerinde saklı duran su ve madensel tuzlar bitki tarafından nasıl alınır? Ayrıca bitkiler kökleri vasıtasıyla topraktan emdikleri bu maddeleri, gövdelerinin farklı bölgelerine nasıl iletirler? Bu zor işlemleri yaparken ne gibi yöntemler kullanırlar?
Bu soruların cevapları verilirken unutulmaması gereken en önemli nokta hiç kuşkusuz ki, suyu metrelerce yukarıya çıkarmanın oldukça zor bir iş olduğudur. Günümüzde bu işlem çeşitli hidrofor sistemleri kullanılarak gerçekleştirilir. Bitkilerdeki taşıma ve dağıtma işlemleri de bir nevi hidrofor sistemi ile sağlanır.
Bitkilerdeki, bu hidrofor sisteminin varlığı yaklaşık 200 yıl önce keşfedilmiştir. Fakat bitkilerde suyun yerçekimine aykırı olarak çalışan bu hareketi sağlayan sistemi kesin bir şekilde açıklayabilen bilimsel bir kanun hala belirlenememiştir. Bu konuda bilim adamları sadece çeşitli teoriler öne sürmekte ve bu teorilerin içinde en akla yatkın ve tatmin edici görünenini geçerli saymaktadırlar. 
Bütün bitkiler gerekli olan maddeleri topraktan alabilecekleri bir dağıtım şebekesi ile donatılmışlardır. Bu şebeke topraktan temin edilen mineralleri ve suyu, gerekli miktarlarda olacak şekilde ihtiyaç duyulan merkezlere en kısa zamanda iletir. 
Bilimadamlarının bulgularına göre, bitkiler bu zor işi başarmak için birden fazla metod kullanırlar. 
Bitkilerde suyun ve besinlerin taşınması birbirinden farklı özelliklere sahip yapılar sayesinde gerçekleşir. Bu yapılar özel olarak tasarlanmış taşıma ve dağıtma kanallarıdır.

Suyun Taşınması
Taşıma işleminin yapılacağı bitkinin büyüklüğü ne olursa olsun, taşıma sistemini oluşturan borular yaklaşık olarak 0.25 mm (meşede)-0.006 mm. (ıhlamurda) genişliğe sahip, kimileri ölü, kimileri de canlı bitki hücrelerinden oluşan68, bu saydıklarımızdan başka herhangi bir özelliğe sahip olmayan odunumsu dokulardır. İşte bu yapılar bitkiler için gerekli olan suyu metrelerce yukarıya taşımak için gerekli olan en uygun tasarıma sahiptirler.
Bu taşıma sisteminin faaliyete geçmesi yaprakların su kaybetmesi ile başlar. Yaprakların alt kısmında ve bazı bitkilerde üst yüzde bulunan ince gözeneklerde (stomalar) meydana gelen işlemler nedeniyle bitkilerde taşıma sistemleri harekete geçer. 
Eğer dışarıdaki havanın nemliliği %100`den az olursa su, yaprakta meydana gelecek buharlaşma nedeni ile bu gözeneklerden dışarı verilir. Hatta dışarıdaki nemlilik %99 bile olsa, bu durum yapraktaki suyun dışarı çıkması için değerlendirilecek bir potansiyel haline gelir ve yaprak süratle su kaybetmeye başlar. İşte bu şekilde bitkilerin, topraktan aldıkları suyun yapraklardan buharlaşmasıyla oluşan su eksilmesini hemen gidermeleri gerekmektedir. 
Görüldüğü gibi yapraklardaki mekanizmalar nemdeki %1 gibi oldukça küçük bir oynamayı tespit edebilecek hassasiyete sahiptirler. Bu çok önemli bir özelliktir. Yapraklarda gerçekleşen diğer olaylar da incelendiğinde çoğu günümüz teknolojisiyle bile tam olarak çözülememiş işlemlerle karşılaşılacaktır. Çok küçük bir alanda gerçekleşen bu mucizevi işlemler akla yine pek çok soru getirecektir. 
%1`lik nem değişikliğini dahi hissederek gereken işlemleri başlatacak mekanizmaya bitkiler nasıl sahip olmuşlardır? Bu mekanizmanın tasarımı kime aittir? Milyonlarca yıl öncesinden günümüze kadar kusursuz bir şekilde işleyen böyle bir teknoloji nasıl ortaya çıkmıştır?
Bu mekanizmayı tasarlayan, meydana getiren bitkilerin kendileri değildir. Böyle bir yapının yaprağa yerleştirilmesinde herhangi başka bir canlının müdahalesinin olması da söz konusu değildir. Kuşkusuz ki bitkilere sahip oldukları tüm özellikleri veren, bu sistemleri milimetrenin yüzde biri hatta binde biri gibi ölçülerle ifade edilen alanlara yerleştiren üstün bir akıl vardır. Bu aklın sahibi tüm alemlerin Hakimi olan her şeyi kontrol altında tutan Allah`tır.


Su Topraktan Metrelerce Yükseklere Nasıl Taşınıyor?
Topraktan yapraklara sıvıların nasıl iletildiği sorusu üzerine üretilen teorilerin en fazla kabul görenlerinden biri "kohezyon teorisi"dir. Kohezyon kuvveti, ağacın "ksilem" (iletim demetleri) adı verilen odun boruları ile sağlanan bir kuvvettir. Bu kuvvet, odun borularındaki suyu oluşturan moleküller arasında bulunan çekim kuvveti sayesinde ortaya çıkar. Odun boruları, suyun taşınmasını sağlayacak olan iki tipte hücreden oluşurlar. Bu hücrelerin bir türü (tracheids hücreleri) belli bir ebata ve şekle ulaştıklarında sitoplazmalarını yitirerek ölürler. Bunun çok önemli bir nedeni vardır. Suyun borularda taşınması sırasında, herhangi bir engelle karşılaşmadan rahatça hareket etmesi gerekir. Bunu sağlamak için sitoplazmanın tam anlamıyla boş bir boru oluşturması şarttır. Sitoplazmanın kalın selüloz hücre çeperini bırakarak yok olmasının nedeni budur. Yaşayan tüm bitkilerin ksilem boru hatları tamamıyla ölü hücrelerden oluşmaktadır.69 Bu sistemdeki bazı hücrelerse oyuklu bir yapıya (oyuklu tracheids) sahiptirler. Bunlar uzun hücrelerdir ve kalın, güçlü çeperleri vardır. Ayrıca yanlarındaki hücreler ile birleşecekleri yerlerde küçük deliklere (oyuklara) sahiptirler. Hücrenin oyuk bölgesi, birbirlerine kolay bağlanabilmeleri için, bir sonraki hücrenin oyuğu ile uyumludur. Bu uyum sayesinde hücre uzantıları gövde boyunca bir seri boru hattı meydana getirirler. Hücre çeperlerindeki delikler iki hücrenin birbiri ile birleştiği yerlerdir. Bu yapı, suyun akışı için boru hattının dayanıklılığını artırır.
Buraya kadar saydığımız tüm özellikler bitkilerde taşımanın güvenli bir şekilde gerçekleşmesi için gerekli olan alt yapının ilk basamaklarıdır. Bu hücrelerin oluşturduğu borular öncelikle suyun emilmesi sırasında oluşacak basınca dayanıklı olmalıdır. Yukarıda da görüldüğü gibi bu sağlamlık hücreler arasındaki oyuklar yoluyla sağlanmıştır. Daha sonra maddelerin taşınma sırasında bir engelle karşılaşmasının önlenmesi gerekir, çünkü katedecekleri yolda karşılacakları herhangi bir engel birbirine çok bağlı olan bu sistemde aksaklıklar oluşmasına neden olacaktır. Bu ihtimal de sitoplazmanın ölümü ve boş borular oluşturması ile önlenmiştir.
Ksilem (odun) borularının hücre çeperleri oldukça kalındır çünkü su, emilme yoluyla ve belli bir basınç altında, ağacın içinde bulunan bu boru-yolda ilerleyecektir. Borular oldukça güçlü olan bu negatif basınca karşı koymak zorundadırlar. Ksilem borularında bir nevi su kolonu oluşur. Bu kolonun gerilme kuvveti, bilinen en yüksek ağacın en üst noktasına kadar suyu taşıyabilecek güçte olmalıdır ki bitki hayatını sürdürebilsin. Su, bu güç sayesinde Mamut ağacında olduğu gibi 120 m. yükseğe kadar çıkabilir..70 
Ksilem borularına suyun topraktan gelişi ise kökler vasıtasıyla gerçekleşir. Bu noktada kökün iç tabakasının önemi ortaya çıkmaktadır. Kökteki hücrelerin protoplazmaları vardır. Hücrenin çevresini oluşturan bu protoplazmalar; büyük bölümü sudan, kalan bölümüyse karbon, hidrojen, oksijen, azot, kükürt, bazen de fosfor içeren proteinler, nişasta ve şeker gibi karbonhidratlar, yağlar ve çeşitli tuzlardan oluşan yapılardır.71 Ve özel bir yarı geçirgen zar ile kaplanmışlardır. Bu da belirli iyonların ve bileşimlerin kolaylıkla dışarı çıkmalarını sağlar. Kökün bu özel yapısı suyun alımını kolaylaştırmaktadır. 




Besin Taşınması
Besinlerin taşındığı soymuk boruları (Phloem) sistemi de iki farklı tür hücreden oluşur. Bu hücreler besinlerin taşındığı temel (eleyici) hücreler ve bağlantı hücreleridir. Her iki hücre de uzundur ve yapı olarak ksilem sistemindeki hücrelerden tamamiyle farklıdırlar. Bu farklılık hücrelerin yapısı incelendiğinde net bir şekilde görülmektedir. Phloem sistemindeki hücrelerin her ikisi de oldukça ince bir hücre çeperine sahiptir. Ayrıca bunlar canlı hücrelerdir. Ksilem sistemindekiler ise ölüdürler.
Soymuk (phloem) borularını oluşturan temel (eleyici) hücreler üzerindeki araştırmalar bunlarda çekirdek bulunmadığını ortaya koymuştur. Buna karşın, bağlantı hücrelerininse oldukça yoğun sitoplazmaları ve dışarı doğru çıkık bir çekirdekleri vardır. 
Görüldüğü gibi bitkilerin taşıma sistemlerindeki borular, yapı, şekil ve oluşum olarak birbirlerinden tamamen farklıdır. Bu farklılığın nedeni, hücrelerin yerine getirdikleri görevler ile bağlantılıdır. Hücre çekirdeği, hücreyle ilgili tüm bilgilerin saklandığı bir merkezdir. Böyle bir merkezin hücre içinde bulunmaması ise oldukça olağan dışı bir durumdur. Temel (eleyici) hücrelerin çekirdekleri yoktur, çünkü bu hücrelerdeki bu tip organeller besin maddelerinin akışını engelleyebilirler. 
Bitkilerdeki taşıma sistemlerinde çok detaylı bir tasarım söz konusudur. Her hücrenin görevi ve buna bağlı olarak da yapısı çok farklıdır. Bu detaylar karşısında akla çok küçük alanlara yerleştirilmiş olan bu düzenlerin nasıl ortaya çıktığı sorusu gelecektir. 
Böyle bir sistemin tesadüfen oluşması mümkün değildir. Bu sistem özel olarak hazırlanmış bir tasarımın sonucudur. Böyle kompleks ve benzersiz bir sistemin neden tesadüfen oluşamayacağını sorular sorarak inceleyelim: 
Bahsettiğimiz oluşum yani hücre çekirdeğinin sadece bu hücre türünde yok olması nasıl bir zamanlama ile, ya da nasıl bir yöntemle ayarlanmış olabilir? Tesadüfler sadece belli hücrelerin çekirdeklerini kaybetmeleri gerektiğine nasıl karar vermiş olabilirler? Karar verdiklerini farzedelim, bu durumda söz konusu yapının, binlerce, milyonlarca yıl tesadüfleri bekleyerek oluşması mümkün müdür? Bu sorunun mutlaka cevaplandırılması gerekecektir. Bu kesinlikle mümkün değildir. Düşünelim ve bunu görelim. Bir bitkideki soymuk borularının eğer çekirdekleri olsaydı ne olurdu? Bu durumda oluşan ilk tıkanmada bitki yavaş yavaş ölürdü. Bu da bitkinin yok olması, dolayısıyla bir süre sonra da bu türün yok olması anlamına gelirdi. Bu sistemin yeryüzünde bulunan diğer tüm bitki türlerinde de oluşması gerektiğini göz önüne alacak olursak, bitkilerdeki taşıma mekanizmalarının tesadüfen oluşamayacağı gerçeği daha net görülecektir. Görüldüğü gibi soymuk borularının bitkiler ilk ortaya çıktıkları andan itibaren bugünkü özellikleriyle eksiksiz var olması zorunludur. Bitkilerde zamanla gelişme diye bir şey söz konusu değildir. 
Bununla birlikte böyle karmaşık ve kusursuz bir sistemdeki dengenin bir kere sağlanmış olması da yetmeyecektir. Çünkü, ağaçlarda ve büyük bitkilerde odun boruları (ksilem sistemi) ve aynı zamanda da soymuk boruları (phloem) sistemi her sene yeni baştan oluşmaktadır. Sistem; tüm yapıları, kendine has özellikleri, özel hücre yapıları, sistemin işleme hızı gibi detaylarıyla birlikte hiçbir aksama olmadan her sene yenilenmektedir. 
Dahası, gıdaların taşınmasında suyun taşınmasının aksine canlı hücreler kullanılmaktadır. Peki, bu ayrımın sebebi nedir?
Aynı bitkinin gövdesi içinde yer alan iki sistemdeki bu fark çok önemlidir, çünkü besin taşınmasında (phloem sisteminde) minerallerin bitki içinde iletilebilmeleri için direkt olarak hücreler görev yaparlar, bu yüzden hücrelerin canlı olmaları gerekir. Ksilem sistemindeki hücrelerse suyun taşınmasında sadece bir boru görevi görürler, suyun yapraklara iletimini sağlayansa içerideki basınçtır. Besin taşınmasında canlı hücrelerden oluşan bir sistemin kurulmasının nedeni işte budur.
Bitkilerin su taşımalarında olduğu gibi, besinleri taşımalarında da sadece teoriler geçerlidir. Botanikçiler bu sistemin nasıl çalıştığıyla ilgili oldukça yoğun araştırmalar yapmışlardır. Yapılan araştırmalarla ortaya çıkan sonuçlardan en kabul göreni "toplu akış hipotezidir".72 Bu hipoteze göre yaprakların iç dokularında besin olarak üretilen şeker, aktif taşıma yoluyla taşıyıcı kanalda canlı olan özel hücrelere iletilir. Bu taşıyıcı kanalı oluşturan hücrelere yani çekirdeğini kaybeden hücrelere gelen şekerli çözelti, kanal boyunca bitkinin şeker yoğunluğu az olan diğer bölgelerine taşınır.73
Bu paragrafı bir de cümleler üzerinde detaylı düşünerek inceleyelim. Bitkiyi oluşturan hücreler şekerin az olduğu bölgeleri tespit edip, gerekli gördükleri yere şeker taşımaktadırlar. Üzerinde düşünülecek olursa hücrelerin böyle bir işi yapmalarında olağanüstü bir durum olduğu rahatlıkla görülecektir. Bu olay nasıl gerçekleşmektedir? Böyle bir kararı hücrelerin kendi kendilerine almaları ve şeker yoğunluğunun miktarını yine kendi kendilerine tespit etmeleri mümkün müdür? Elbette ki bu mümkün değildir. Şuursuz hücreler böyle bir tespit yapamazlar. Diğer hücrelerin nelere ihtiyaçları olduğunu bilemezler. Bitkilerdeki bu hücreler de evrendeki tüm canlılar gibi yaratıcıları olan Allah`a boyun eğmişlerdir ve O`nun ilhamı ile hareket etmektedirler. Allah bu gerçeği bir ayetinde şöyle bildirmektedir:
...O`nun, alnından yakalayıp-denetlemediği hiçbir canlı yoktur... (Hud Suresi, 56)



Evrimin Besinlerdeki Taşıma Sistemleriyle İlgili Çıkmazları 
Evrimciler bitkilerdeki tüm bu sistemlerin milyonlarca yıllık bir zaman süreci içinde, kontrolsüz tesadüfler sonucunda, bu mükemmel hallerine ulaştıklarını iddia ederler. Ve evrimcilere göre bu işlemlerin tamamlanmasını bekleyen bitkilere nedense hiçbir şey olmamıştır. Her tesadüf yerinde gerçekleşirken, geçiş aşamalarında bitki besin üretemediği için ölmemiş, susuz kalıp kurumamış ve bütün bunlara milyonlarca yıl dayanmıştır. 
Bu bölümde bitkilerin sahip olduğu kompleks sistemlerden sadece taşıma sisteminin yapısı genel hatlarıyla incelenmiştir. Bu konu bile kendi başına evrim teorisinin anlamsızlığını kanıtlamak için yeterlidir. Evrimcilerin bu konulardaki iddiaları evrimin mikrobiyolojik çöküşü bölümünde detaylı olarak ele alınacaktır.
Buraya kadar saydığımız tüm özellikler bitkilerde su ve besin taşımanın güvenli bir şekilde gerçekleşmesi için gerekli olan alt yapının genel hatlarıdır. İnce ayrıntılarına girmeden genel hatlarıyla incelediğimiz bu kompleks mekanizmalar hiç kuşkusuz ki eşsiz ve üstün bir aklın eseridir. Suyun taşınmasında bu iş için özel seçilmiş hücrelerin oluşturduğu borular vardır ve bunlar suyun emilmesi sırasında oluşacak basınca dayanıklı olmalıdır. Ayrıca bu yapının suyu kolay iletebilmesi için sitoplazması olmamalıdır. Besin taşıyan hücreler ise tam aksine canlı olmak zorundadırlar ve besini iletebilmek için de bir sitoplazmaya sahip olmalıdırlar. Peki öyleyse bitkilerdeki su ve besin taşıma işlemini en ince ayrıntısına kadar sağlayan bu mekanizmaları kim oluşturmuştur? Bitkiler mi? Suyu taşıyan kanallardan, fotosentez yapan yapraklardan, dallardan, kabuklardan oluşan bitkiler suyun fiziksel özelliklerini, basınç sistemlerini ve bunlara benzer diğer ayrıntıları bilmeden kendi kendilerine taşıma işlemine uygun alt yapıyı nasıl kurabilirler? Yine besin taşıyan kanallar şekerin yapısını bilmeden bu maddeyi en iyi şekilde taşıyacak sistemi nasıl bulabilirler? 
Bu gibi sorular çoğaltılabilir, ne var ki hepsinin tek bir cevabı vardır. Bitkilerin böyle kusursuz sistemleri "kurmaları", "tasarlamaları" veya "bulmaları" gibi bir şey söz konusu bile değildir. Bitkilerin bir iradeleri yoktur. Bilim adamlarının dahi "anlayabilmekte" güçlük çektikleri bu kusursuz sistemleri oluşturanlar bitkilerin kendileri değildir. Tesadüfler de değildir.
Tüm bu sistemleri tam gereken şekilde bitkinin hücrelerine yerleştiren, bitkiyi de, suyu da, besini de yaratan Allah`tır. Her şeyi eksiksiz yaratan ve yarattıklarını da en güzel, en kusursuz yapan Rabbimiz bize Kendisi`ni tanıtmaktadır.

Besinlerin Dağıtılması
Köklerin topraktan aldığı mineralleri dağıtması işlemi de gövdeye düşmektedir. Gövde, mineralleri ihtiyaç duyulan bölgelere en uygun şekilde dağıtmak durumundadır. Örneğin kalsiyumun yaprak sapında daha fazla bulunması gerekir çünkü sap, yaprakları ve çiçekleri taşıdığı için dayanıklı ve sert bir yapıya sahip olmalıdır. Tohumda ise, sapa oranla daha az miktarda kalsiyum bulunur. 
İnsan vücudundan bir örnek vermek gerekirse magnezyumun insan vücudundaki görevi kasların güçlenmesini, protein sentezini, hücrelerin büyümesini ve yenilenmesini sağlamaktır. Yani magnezyum, büyümenin ve hücrenin motorudur. Bitkilerde de magnezyum, bitkinin büyüme noktalarında depolanmıştır ve oluşacak klorofilin yapısında yer almak için bekler. Bitkilerde yer alan başka bir element olan fosfor da aynı magnezyum gibi büyüme noktalarında ve bitkinin çiçek, meyve gibi kısımlarında daha fazla bulunur.74 
Bitkilerde bulunan bu kusursuz taşıma sistemi, tümüyle bilinçli bir tasarımın, üstelik de günümüzde dahi tam olarak nasıl bir plan üzerine gerçekleştiği keşfedilememiş bir tasarımın ürünüdür, yani çok üstün bir akla ve bilgiye sahip olan bir tasarlayıcının eseridir. Bu tasarlayıcı da hiç kuşkusuz yeryüzündeki tüm canlıların Rabbi olan ve onların her türlü ihtiyacından haberdar olan Allah`tır.
O, yarattığını bilmez mi? O, Latif`tir; Habir`dir. (Mülk Suresi, 14)




BİTKİLERİN İLGİNÇ ÖZELLİKLERİ
Zamanı ölçebilme yeteneği genelde insanın dışında diğer canlılarda bulunmasının beklenmediği bir özelliktir. Bunun sadece insanlara özgü olduğu düşünülebilir ama hem bitkiler hem de hayvanlar, zamanı ölçme mekanizmasına yani "biyolojik bir saate" sahiptirler:



Bitkilerdeki Biyolojik Saat
Bitkilerin zamana bağlı hareketlerinin ilk defa anlaşılması 1920`lere dayanmaktadır. Bu yıllarda Almanya`da iki bilimadamı Erwin Buenning ve Kurt Stern fasulye bitkisindeki yaprak hareketlerini inceliyorlardı. İncelemeleri sonunda gördüler ki, bitkiler gün boyunca yapraklarını güneşe doğru uzatıyorlar, geceleri de tam dikey olarak yapraklarını büzüp uyku pozisyonuna geçiyorlardı. 
Bu bilimadamlarından yaklaşık iki yüzyıl önce de Fransız Astronom Jacques d`Ortour de Marian da bitkilerin böyle düzenli bir uyku ritmine sahip olduklarını gözlemlemişti. Karanlık bir ortamda ısı ve nem ayarlaması yapılarak tekrarlanan deneylerde bu durumun değişmemesi, bitkilerin içlerinde zaman ölçen bir sistemlerinin olduğunu göstermişti. 
Bitkiler belirli faaliyetleri için belirli zamanları seçerler. Bunu da güneş ışığındaki değişimlere bağlı olarak yaparlar. İçlerindeki saat güneş ışığıyla kurulduğu için ritmik hareketlerini 24 saat içinde tamamlarlar. Bitkilerin ritmik davranışlarının haftalarca sürdüğü de olabilir.75 
Yapılan ritmik hareketler ne kadar sürerse sürsün değişmeyen bir nokta vardır. Bu hareketler her seferinde bitkinin yaşaması ve neslinin devamı için, hep en uygun zamanlamada gerçekleşir. Ve bu hareketlerin başarıyla tamamlanabilmesi için birçok karmaşık işlemin kusursuz bir şekilde meydana gelmesi gerekir.
Örneğin birçok bitkide çiçeklenme yılın belli bir zamanında olur. Çünkü bu zamanlar bitkinin çiçeklenmesi için en uygun zamanlardır. Bitkilerin bu zaman ayarlamalarını yapan saatleri, güneş ışığının yapraklara düşme süresini de hesaplar. Her bitkinin biyolojik saati bu süreyi bitkinin kendi yapısal özelliğine göre hesaplar. Yapılan hesap ne olursa olsun çiçeklenme en uygun zamanda gerçekleşir. Bu şekilde bir zaman ayarlaması yapan soya fasulyesi üzerinde yapılan araştırmalar sonucunda, bu bitkilerin ne zaman ekilirlerse ekilsinler her zaman yılın aynı zamanlarında çiçek açtıkları görülmüştür.
Bitkiler çiçeklenmenin dışında daha birçok faaliyetlerinde mükemmel zamanlamalar kullanırlar. Örneğin gelincik çiçekleri polenlerini yayma zamanlarını, polen taşıyıcıların en yoğun şekilde dolaştıkları günlere ve saatlere denk getirirler. Yine her bitki için bu günler ve saatler değişir. Ama sonuçta her bitki yaptığı zaman ayarlamasıyla en garantili biçimde polenlerini yaydırır. Gelincik çiçekleri Temmuz ile Ağustos aylarında sabah 05.30 ile 10.00 saatleri arasında polenlerini yayarlar. Bu saat, arıların ve diğer böceklerin de beslenmek için dışarıya çıktıkları saatlerdir. Burada bitki, kendi özellikleri dışında bir de diğer canlıların özelliklerini en ince ayrıntısına kadar hesaba katmalıdır. Bu bitki kendisini dölleyecek olan canlıların yuvalarından çıkacakları zamanı, katedecekleri yolun süresini ve beslenme saatlerini tam olarak bilmelidir. Bu durumda akla şu soru gelecektir: Bütün bu "bilgilere" sahip olan ve gerekli "hesaplamaları" yapan "diğer bir canlının özelliklerini analiz eden" ve bir bilgisayar merkezini andıran bu saat, bitkinin neresindedir?
Bilim adamları bitkiler dışındaki canlılardaki biyolojik saatin, genel olarak hipofiz bezinin etkisiyle oluştuğunu düşünmektedirler. Fakat bitkilerdeki bu mükemmel zaman ölçme sisteminin nerede bulunduğu onlar için hala tam bir sırdır.76 
Bu sonuç bize, bitkilerin her türlü faaliyetlerinin zamanlamasını belirleyen, dolayısıyla hepsini bilgisi ve denetimi altında bulunduran üstün bir aklın ve gücün delillerini ortaya koymaktadır. Allah üstün gücü ve sonsuz aklıyla her yerde yaratılış delillerini bizlere göstermekte ve bunları görerek öğüt alıp düşünmemizi istemektedir.



Bitkilerdeki Savunma Stratejileri
Bitkiler de kendilerini düşmanlarından bir şekilde korumak zorundadırlar. Bu korunma her bitki türüne göre çeşitlilik gösterir. Örneğin bazı bitkiler, parazitlere ve böceklere karşı çeşitli salgılar üreterek düşmanlarıyla mücadele ederler ve kendilerini ancak bu şekilde korurlar. Bir numaralı savunma silahları olan zehirli kimyasal salgılarını gereği gibi kullanabilmek için bitkiler çok çeşitli stratejiler kullanırlar. Örneğin, mantar ve salatalıkların zehirli uçları vardır ve bunları saldırı anında harekete geçirirler. Bu tam teçhizatlı savaşın başka bir örneği de çınar ağaçlarında mevcuttur. Çınar ağacı, yapraklarından salgıladığı bir öz su yardımıyla, gövdesinin altındaki toprağı sistemli bir şekilde zehirler, öyle ki bu zehirden sonra, toprağın üstünde küçücük bir ot bile yetişemez. Bu zehirli maddeyi bünyesinde barındırmasına rağmen çınar ağacı kendisi bundan herhangi bir zarar görmez. 
Saldırıya uğradıklarında bulundukları ortamdan uzaklaşmalarını sağlayacak ayakları veya savaşacak herhangi bir organı olmayan bitkiler düşmanlarına karşı sadece salgılarla karşılık vermezler, bunun yanı sıra pek çok savunma mekanizması ile birlikte yaratılmışlardır. Bu mekanizmaların içinde haberleşme yeteneği de vardır.77 Bazı bitkiler, ısırılan bölgeden kendilerini ısıran böceğin sindirim sistemini bozucu ve ona sahte tokluk hissettiren bir sıvı salgılar. Aynı zamanda yaprak hasar gördüğü yerden "jasmonik asit" denen bir tür asit de salgılayarak diğer yaprakların saldırıdan haberdar olmalarını ve savunmaya geçmelerini sağlar. 
Mısır ve fasulye bitkileri ise düşmanlarından korunmak için parazit yaşayan eşek arılarını adeta paralı asker gibi kullanırlar. Yapraklarına tırtıl dadandığında özel bir kimyasal salgı salgılayan bu bitkiler eşek arılarını bulundukları yere toplarlar. Eşek arıları da larvalarını bitkiye saldırmış olan tırtılların üstlerine bırakırlar. Büyüyen eşek arısı larvaları tırtılların ölümüne neden olur bu da bitkinin kurtulmasını sağlar. Bitkilerin bazıları ise aleolu kimyasal bileşikleri yapılarında bulundururlar. Bunlar böcek ve hayvanlar için bazen çekici, bazen korkutucu, bazen alerji yapıcı, bazen de öldürücü olarak etkilerini gösterirler. 
Örneğin kelebekler çalı çiçekli bitkilere yanaşmazlar. Çünkü bu tür çiçekler savunma sistemlerinin içinde "sinigrin" adlı bir zehir maddesi bulundururlar. Buna karşın kelebekler zehir maddesi taşımadıklarını bildikleri salkım çiçekli bitkileri tercih ederler. Buradaki ayrımı kelebeklerin nasıl öğrenmiş olabilecekleri ayrıca cevap bekleyen bir sorudur. Kelebeğin bunu tecrübe ederek öğrenmesi imkansızdır. Bitkinin tadına bakması kelebeğin sonu olacaktır. O halde bu bilgiyi kelebekler farklı bir şekilde elde etmektedirler.
Akçaağaçların, özellikle şeker akçaağacının genç sürgünlerini ve yapraklarını zararlı canlılardan koruma düzeni çoğu zaman insanların ürettikleri böcek öldürücülerden çok daha etkilidir. Şeker akçaağacı, gövdesinde bol şekerli öz su olmasına rağmen, yapraklarına "tanen" denen bir maddeyi gönderir. Bu, böcekleri rahatsız eden bir maddedir. "Tanen"li yaprakları yiyen böcekler kurtulmak için hemen daha az tanenli üst yapraklara çıkarlar. Oysa üst yapraklar kuşların en çok uğradıkları yerlerdir. Buraya kaçan böcekler kuşlar tarafından avlanırlar. Şeker akçaağacı bu stratejisi sayesinde böcek saldırılarından az zarar görerek kurtulur.78 
Orta ve Güney Amerika`da yetişen bir asma bitkisi siyah ve yeşil tırtıllar ve kırmızı kelebekler için çok ideal ve çekici bir yiyecek türüdür. Öyle ki bu böcekler, yavrularının yumurtadan çıkar çıkmaz bu lezzetli yiyecekle beslenebilmeleri için, yumurtalarını asma bitkisinin yaprakları üzerine bırakırlar. Yalnız burada çok önemli bir nokta vardır. Bu kelebekler yumurtalarını bırakmadan önce asmanın yapraklarını iyice kontrol ederler. Eğer bir başka hayvan yumurtalarını yerleştirmişse, aynı bitkinin yapraklarından birden fazla ailenin bireylerinin beslenmesi zor olacağından, orayı tercih etmez ve boş olan başka yaprakları ararlar.79 
Böceklerin tercihinin bu yönde olması bitki için oldukça büyük bir avantajdır çünkü asma bitkisi saldırıdan korunmak için böceklerin bu seçiciliğinden faydalanır. 
Asma bitkisinin bazı cinsleri, yapraklarının üst kısımlarında, yeşil yumrucuklar oluştururlar. Bazı türleri ise, yaprağın altında bulunan, dal ile birleşme yeri üzerinde, kelebeklerin yumurtalarına benzer renkte lekecikler meydana getirirler. Bunu gören tırtıl ve kelebekler, başka böceklerin kendilerinden evvel bu yaprakların üzerine yumurtladıklarını zannederler ve bitkiye yumurtlamaktan vazgeçerek, kendilerine yeni yapraklar aramaya başlarlar. 
Yapraklarını böylesine inanılmaz bir yöntemle koruma altına almış olan asma bitkisi, herkesin bildiği gibi topraktan çıkan ve kuru bir dal ile yapraklardan oluşan bir bitkidir. Bu bitki herhangi bir akıl, hafıza ve teşhis kabiliyetine sahip değildir. Kendisinden tamamen farklı bir canlının, bir böceğin özelliklerini, tercihlerini, yumurtlarının şeklini bilmesine kesinlikle imkan yoktur. Ama görüldüğü gibi asma bitkisi böceğin, hangi şartlarda yumurtalarını bırakmaktan vazgeçip de başka bir bitkiye yöneleceğini bilmekte, ayrıca kendi yapraklarında bu yumurtalara benzer desenler oluşturmakta ve çeşitli değişiklikler yapmaktadır. Asma bitkisinin, herhangi bir böceğin yumurtalarını taklit edebilmesi için neler yapması gerektiğini birlikte düşünelim. Taklit, zeka gerektiren bir yetenektir. Bu nedenle bitki bir zekaya sahip olmalı, bu yumurtaları görüp idrak etmeli ve hafızasına bunu yerleştirmelidir. Daha sonra bu özelliklerini, bazı sanatsal kabiliyetleri ile birleştirip, kendi bünyesinde çeşitli değişiklikler oluşturup böyle bir savunma taktiği geliştirmelidir. Elbette ki bu saydıklarımızın hiçbiri, bir bitki tarafından gerçekleştirilmiş olması, ya da çeşitli tesadüfler sonucunda ortaya çıkması mümkün olan şeyler değildir. Gerçek şu ki, asma bitkisi bu özelliğe sahip olarak "yaratılmış"tır. Bu, ona Allah tarafından özel olarak verilmiş bir savunma sistemidir. Her şeyi en ince ayrıntısına kadar planlayan Allah yeryüzündeki tüm bitkilerin bulundukları ortamda gereken her türlü ihtiyaçlarını yaratmıştır. Allah her şeyin hakimidir. Tüm evrende olan biten her şeyden haberdardır. Allah bir ayetinde bu gerçeği şöyle bildirmektedir:
Gökten yere her işi O evirip düzene koyar... (Secde Suresi, 5)



BİTKİLERİN EVRİMİ SENARYOSU
Evrimciler, bitkilerin oluşumuyla ilgili olarak tek bitkiden yüz binlerce çeşit bitki türünün ortaya çıktığını iddia ederler. Kuşkusuz evrimciler diğer konularda olduğu gibi bu konuda da iddialarını destekleyebilecek herhangi bir bilimsel delil sunamazlar. Çünkü evrimciler hayvanların ve insanların evrimi ile ilgili iddialarında düştükleri çıkmaza, bitkilerin evrimi ile ilgili ortaya attıkları senaryolarda da düşmektedirler. 
Bugün bitkilerin evrimi senaryosu savunucularının düştükleri en büyük çıkmaz hiç kuşkusuz ki ilk bitki hücresinin nasıl olup da evrimleştiğidir. Aslında, sadece bitkilerin evrimi konusunda değil, evrimle açıklanmaya çalışılan her konuda evrimcilerin içine düştükleri en büyük çıkmaz, kuşkusuz ki ilk hücrenin nasıl oluştuğu konusudur. 
Bilindiği gibi hücreler son derece küçük canlı yapılar olmalarına rağmen çok karmaşık sistemlere sahiptirler. Öyle ki bu sistemlerin tam olarak nasıl işledikleri konusunda bugüne kadar anlaşılamamış pek çok nokta bulunmaktadır. Hücre dev bir fabrika benzeri kompleks yapılara sahiptir. Tek bir organelinin eksik veya olması gerektiğinden farklı olması durumunda hücre işlevini yerine getiremez. Çünkü her bir organelin özel bir görevi ve diğer organeller ile çok karmaşık bağlantıları vardır. Bir hücrenin içinde enerji üreten yapılardan hücre ile ilgili bütün bilgilerin kayıtlı olduğu birimlere, gerekli yerlere maddelerin ulaşmasını sağlayacak taşıma sistemlerinden, gelen maddeleri ayrıştırma bölümlerine, enzim ve hormon üreten birimlere kadar pek çok kompleks yapı mevcuttur. 
Bu yapılar karşısında evrimci bir bilim adamı olan W.H. Thorpe, "canlı hücrelerinin en basitinin sahip olduğu mekanizma bile, insanoğlunun şimdiye kadar yaptığı, hatta hayal ettiği bütün makinalardan çok daha komplekstir"85 şeklindeki ifadesiyle hayranlığını belirtmiştir. 
Hücredeki olağanüstü yapıyı görmezlikten gelemeyen bilim adamlarından biri de ünlü Rus evrimcilerinden Alexander Oparin`dir. Oparin evrim teorisinin hücrenin kompleksliği karşısında içine düştüğü durumu şöyle ifade eder:
Maalesef hücrenin meydana gelişi evrim teorisinin bütününü içine alan en karanlık noktayı oluşturmaktadır.86 
Bir canlı hücresinin tesadüfen oluşması kesinlikle mümkün değildir. 20. yüzyıl biliminin hücredeki akıl almaz kompleksliği ortaya çıkarması, böyle olağanüstü bir yapının tesadüfen ortaya çıkabilmesinin her türlü ihtimalin dışında olduğunu göstermiştir. Bununla birlikte 21. yy.`ın eşiğinde olduğumuz şu dönemde hücrenin daha pek çok sırrı modern bilim tarafından henüz aydınlanmamıştır. Hücrenin tesadüfen oluşması bir yana, bugün en gelişmiş teknolojiye sahip laboratuvarlarda, uzman bilim adamlarının yıllar süren tecrübe ve gayretleri sonucunda bile yapay olarak bir canlı hücresi üretilememektedir. 
Sonuçta, tek bir canlı hücresi bile bizi o kesin ve mutlak sonuca götürür: her şey, sonsuz akıl ve kudret sahibi olan Allah`ın yaratmasıyla var olmuştur ve her şey O`nun eşsiz sanatının ve ilminin eseridir. 
Bu bölümde, canlı hücresinin neden tesadüfen oluşamayacağı konusuna detaylı olarak girilmeyecektir. (Detaylı bilgi için bkz. Harun Yahya, Hücredeki Mucize) Bu kitapta ele alınacak olan asıl konu, evrim teorisinin iddia ettiğinin aksine, tek bir bakteri hücresinden tesadüfler sonucunda mükemmel bir şekilde tasarlanmış bitkilerin oluşamayacağı olacaktır. 
Evrimciler dünyanın ilk oluşum dönemlerinde bir bakteri hücresinin tesadüfen ortaya çıktığını, milyonlarca yıl süren bir zaman süreci sonucunda bu hücreden diğer tüm canlıların; örneğin kuşların, böceklerin, kaplanların, atların, kelebeklerin, yılanların, sincapların çıktığını iddia ederler. Aynı şekilde sayısız bir çeşitliliğe sahip olan bitkiler de evrimcilere göre yine tek bir bakteri hücresinden oluşmuştur. İşte bu bölümde evrimcilerin bu iddialarının gerçekleşmesinin imkansızlığı ve bunların hayal gücüne dayalı, bilimsel olmayan iddialar olduğu incelenecektir. 
Bitkilerin evrimi senaryosunda ilk bitki hücresinin fotosentez yapabilen "ilkel" bir bakteri hücresinden evrimleştiği iddia edilir. Bu senaryoda evrimleştiği öne sürülen "ilkel hücre", bir bakteri hücresidir (prokaryot hücre). Bu iddianın tutarsızlığına geçmeden önce, bir bakteri hücresinin evrimcilerin iddia ettikleri gibi gerçekten "ilkel" olup-olmadığını inceleleyelim.

Evrim Teorisinin İlkel Hücre Olarak Gördüğü Bakteriler Gerçekten "İlkel" midir?
Bakteriler, 1 mikrometre (1 milimetrenin binde biri) çapında olan ve hücre zarı ile DNA ipliğinden başka yapı içermeyen çok küçük canlılardır. Yapıları diğer canlı hücreleri ile karşılaştırıldığında çok daha basit gibi görünür. Ancak bu, bakterilerin kesinlikle ilkel canlılar oldukları anlamına gelmez. Bu küçük hücrelerin içerisinde yeryüzünde yaşamın sürekliliğini sağlayan çok önemli biyokimyasal olaylar gerçekleşir. Bakteriler, yeryüzündeki doğal ekolojik sistemin işleyişinde çok önemli görevleri yerine getirirler. Örneğin bazı bakteri türleri ölü bitki ve hayvan kalıntılarını parçalayarak, bunları canlı organizmalar tarafından tekrar kullanılmak üzere temel kimyasal maddelere dönüştürürler. Bazıları toprağın verimliliğini artırırlar. Bunlardan başka sütü peynire dönüştürmek, zararlı bakterilere karşı antibiyotik üretmek, vitamin sentezi yapmak gibi çok önemli görevler yerine getirirler. 
Bunlar bakterilerin yerine getirdikleri sayısız görevden sadece birkaç tanesidir. Bütün bunları yapan bakterilerin hücre yapıları basit gibi görünse de derinlemesine incelendiğinde hiç de böyle olmadığı görülür. Bir bakterinin 2000 civarında geni vardır. Her bir gen ise 100 kadar harf (şifre) içerir. Bu da bakterinin DNA`sındaki bilginin en az 2 milyon harf uzunluğunda olması demektir. Bu ne anlama gelir? Bu hesaba göre tek bir bakterinin DNA`sının içerdiği bilginin, her biri 100.000 kelimelik 20 romana denk olması demektir.87 
İşte her bir bakterinin DNA`sında kodlu bu bilgilerdeki herhangi bir değişiklik, bakterinin tüm çalışma sistemini bozacak kadar önemlidir. Görüldüğü gibi bakterilerin gen şifrelerinde bir aksaklık olması, çalışma sistemlerinin bozulması, yani bakterilerin yaşayamamaları ve nesillerini devam ettirememeleri anlamına gelir. Bunun sonucunda da ekolojik denge zincirinin çok kritik bir halkası kopmuş ve canlılar alemindeki bütün dengeler altüst olmuş olur. Bu kompleks özellikler göz önüne alındığında evrim teorisinin iddia ettiği gibi bakterilerin ilkel hücreler olmadıkları anlaşılmaktadır. Dahası evrimcilerin iddiasındaki gibi, bakterilerin evrimleşerek bitki ve hayvan hücrelerine (ökaryotik hücrelere) dönüşmesi de her türlü biyoloji, fizik ve kimya kuralına aykırı bir olaydır. Bu imkansızlığı açıkça bilmelerine rağmen evrim teorisi savunucuları çaresizliklerinden uydurdukları bu tutarsız teorileri savunmaktan vazgeçmezler. Bununla birlikte bu teorilerinin tutarsızlığını da zaman zaman dile getirmekten geri duramazlar. Örneğin, ünlü yerli evrimcilerden Prof. Ali Demirsoy ilkel olduğu iddia edilen bakteri hücrelerinin ökaryotik hücrelere dönüşemeyeceğini şu sözleriyle itiraf etmektedir:
Evrimde açıklanması en zor olan kademelerden biri de bu ilkel canlılardan, nasıl olup da organelli ve karmaşık hücrelerin meydana geldiğini bilimsel olarak açıklamaktır. Esasında bu iki form arasında gerçek bir geçiş formu da bulunamamıştır. Bir hücreliler ve çok hücreliler bu karmaşık yapıyı tümüyle taşırlar, herhangi bir şekilde daha basit yapılı organelleri olan ya da bunlardan birinin daha ilkel olduğu bir gruba veya canlıya rastlanmamıştır. Yani taşınan organeller her haliyle gelişmiştir. Basit ve ilkel formları yoktur.88 
"Evrimci bir bilim adamı olan Prof. Ali Demirsoy`u bu derece açık itirafları yapmaya iten nedir?" sorusu akla gelebilir. Bu sorunun cevabı, bakteri hücresi ile bitki hücresi arasındaki büyük yapısal farklılıklara bakıldığında çok net bir şekilde verilebilir. Bunlar;
1. - Bakteri hücresinin hücre duvarı polisakarid ve proteinden oluşurken, bitki hücresinin hücre duvarı bunlardan tamamen farklı bir yapı olan selülozdan oluşur. 
2. - Bitki hücresinde zarla çevrili, son derece kompleks yapılara sahip pek çok organel varken, bakteri hücresinde hiç organel yoktur. Bakteri hücresinde sadece serbest halde dolaşan çok küçük ribozomlar vardır. Bitki hücresindeki ribozomlar ise daha büyüklerdir ve zarlara bağlıdırlar. Ayrıca her iki ribozom tipi de farklı yolla protein sentezi gerçekleştirir.89 
3. - Bakteri hücresindeki ve bitki hücresindeki DNA`ların yapıları birbirlerinden farklıdır. 
4. - Bitki hücresindeki DNA molekülü çift katlı bir zarla muhafaza edilirken, bakteri hücresindeki DNA molekülü hücre içerisinde serbest durmaktadır.
5. - Bakteri hücresindeki DNA molekülü biçim olarak kapalı bir ilmik görünümündedir yani daireseldir. Bitki hücresindeki DNA molekülü ise doğrusal biçimdedir.
6. - Bakteri hücresindeki DNA molekülünde oldukça az sayıda protein vardır. Ancak bitki hücresindeki DNA molekülü bir uçtan diğer uca kadar proteinlere bağlıdır. 
7. - Bakteri hücresindeki DNA molekülü tek bir hücreye ait bilgi taşımaktayken, bitki hücresindeki DNA molekülü bitkinin tümüne ait bilgileri taşır. Örneğin meyveli bir ağacın kökleri, gövdesi, yaprakları, çiçekleri ve meyvesine ait tüm bilgiler, ağacın tüm hücrelerinin her birinin çekirdeğindeki DNA`da ayrı ayrı bulunmaktadır.
8. - Bazı bakteri türleri fotosentetiktir, yani fotosentez yaparlar. Ancak bitkilerden farklı olarak bakteriler hidrojen sülfit ile sudan ziyade başka bileşikleri kırar ve oksijen gazı salmazlar. Ayrıca fotosentetik bakterilerde (örneğin cyano bakterisinde) klorofil ve fotosentetik pigmentler kloroplast içinde bulunmazlar. Bunlar hücrenin içinde çeşitli zarların içine gömülü olarak dağılmışlardır.
9. - Bakteri hücresi ile bitki/hayvan hücresindeki mesajcı RNA`ların biyokimyasal yapıları birbirlerinden oldukça farklıdır.90 
Mesajcı RNA, 3 tip RNA arasında belki de en önemli olanıdır. Çünkü DNA direkt olarak protein sentezlemez. DNA, mesajcı RNA molekülünü sentezler ve mRNA polipeptid amino asitlerinin zincirleme olarak üretilmesi için gerekli bilgiyi içerir. Mesajcı RNA`nın taşıdığı bu bilgiler gerekli yere ulaşınca amino asitler ve proteinler üretilir. 
Hücrenin yaşayabilmesinde mesajcı RNA son derece hayati bir görev üstlenmiştir. Ancak mesajcı RNA hem ökaryotik (canlı hücrelerinde) hem de prokaryotik (bakteri hücrelerinde) hücrelerde aynı hayati görevi üstlenmiş olmasına rağmen, biyokimyasal yapıları birbirlerinden farklıdır. Science`ta yayınlanan bir makalesinde Darnell konuyla ilgili olarak şöyle yazmıştır:
Mesajcı RNA oluşumunun biyokimyasında ökaryotlar ve prokaryotlar kıyaslandığında fark o kadar büyüktür ki prokaryot hücreden ökaryot hücreye evrim muhtemel değildir.91
Yukarıda birkaç örneğini verdiğimiz bakteriler ve bitki hücreleri arasındaki büyük yapısal farklılıklar evrimci bilim adamlarını büyük çıkmaza sokmaktadır. Bazı bakterilerin ve bitki hücrelerinin sahip oldukları ortak yönler olmasına rağmen, bu yapılar genel olarak birbirlerinden oldukça farklıdırlar. Hatta bakterilerde hiç organel bulunmamasına rağmen, bitki hücrelerinde çok kompleks işlevlere sahip birçok organel bulunması bitki hücresinin bakteri hücresinden evrimleştiği iddiasını kesin olarak geçersiz kılmaktadır. 
Prof. Ali Demirsoy aşağıdaki sözleriyle bu durumu açıkça itiraf etmektedir:
Karmaşık hücreler hiçbir zaman ilkel hücrelerden evrimsel süreç içerisinde gelişerek meydana gelmemiştir.92 




Evrimcilerin Bu Konudaki İddialarının Geçersizliği
Bir bakteri hücresinden bitki hücrelerinin evrimleşmesi kesinlikle mümkün olmamasına rağmen, evrimci bilim adamları bu gerçeği görmezden gelmeye çalışarak birçok tartışmalı hipotezler ortaya atmışlardır. Ancak yapılan deneyler ortaya atılan bu hipotezleri çürütmektedir.93 Bu hipotezlerden en popüler olanı "endosimbiosis" tezidir. 
Bu tez 1970 yılında Lynn Margulis tarafından ortaya atılmıştır. Margulis Ökaryotik Hücrelerin Kökeni isimli kitabında bakteri hücrelerinin ortak ve asalak yaşamları sonucunda bitki ve hayvan hücrelerine dönüştüklerini iddia etmektedir. Bu teoriye göre, bitki hücreleri bir bakteri hücresinin bir başka fotosentetik bakteriyi yutmasıyla ortaya çıkmıştır. Fotosentetik bakteri ana hücrenin içerisinde evrimleşerek kloroplast haline gelmiştir. Son olarak ana hücrede, her nasıl olduysa, çekirdek, golgi, endoplazmik retikulum ve ribozomlar gibi son derece kompleks yapılara sahip organeller evrimleşmiştir. Böylece bitki hücreleri oluşmuştur.
Görüldüğü gibi evrimcilerin bu tezleri tamamen hayal ürünü olan bir senaryodan başka bir şey değildir. Bütün masalsı anlatımına rağmen, bu senaryo evrimciler açısından mutlaka ortaya atılması gereken bir senaryoydu. Çünkü evrimcilerin, hem bitki hücresi gibi kompleks bir yapının, hem de fotosentez gibi canlılar alemindeki en hayati reaksiyonun nasıl ortaya çıktığını bir şekilde açıklamaları gerekiyordu. Margulis`in bu teorisi, hücrenin sahip olduğu bir özelliğe dayandırıldığı için, diğer iddialardan daha avantajlı gibi görünüyordu. Bu yüzden Margulis`in ortaya attığı bu tez, çıkmaz içindeki pek çok evrimci bilim adamı tarafından bir can simidi olarak görüldü.
Evrimciler bitki hücresinin bir özelliğine dayanarak bu teoriyi savundular. İşte bu özellik, hücrenin bütünü göz ardı edilerek tek başına ele alındığında, konu hakkında bilgisi olmayan kişileri aldatmaya elverişli bir özellikti. Fakat bu durum konu hakkında önemli çalışmalar yapan pek çok bilim adamı tarafından da çok yönlü olarak eleştirildi: Bu bilim adamlarına örnek olarak D.Lloyd94, Gray ve Doolittle95, Raff ve Mahler`i verebiliriz. 
Endosimbiosis tezinin dayandırıldığı özellik, hücre içerisindeki kloroplastların ana hücredeki DNA`dan ayrı olarak kendi DNA`larını içermesidir. İşte bu özellikten yola çıkarak bir zamanlar mitokondri ve kloroplastların bağımsız hücreler oldukları ileri sürülür. Ne var ki kloroplastlar detaylı olarak incelendiğinde, bu iddianın göz boyamaya yönelik bir senaryodan başka bir şey olmadığı görülür. 
Margulis`in endosimbiosis tezini geçersiz kılan noktalar şunlardır:
1. - Öncelikle kloroplastlar iddia edildiği gibi geçmişte bağımsız hücreler iken büyük bir hücre tarafından yutulmuş olsalardı bunun tek bir sonucu olurdu; o da, bunların ana hücre tarafından sindirilmesi ve besin olarak kullanılmasıdır. Çünkü söz konusu ana hücrenin dışarıdan besin yerine yanlışlıkla bu hücreleri aldığını varsaysak bile, ana hücre sindirim enzimleriyle bu hücreleri sindirirdi. Tabii bu durumu bazı evrimciler "sindirim enzimleri yok olmuştu" diyerek geçiştirebilirler. Ama bu, açık bir çelişkidir. Çünkü eğer hücrenin sindirim enzimleri yok olmuş olsaydı bu kez beslenemediği için ölmesi gerekirdi.
2. - Yine, tüm imkansızların gerçekleştiğini kloroplastın atası olduğu iddia edilen hücrelerin ana hücre tarafından yutulduğunu varsayalım. Bu kez karşımıza başka bir problem çıkar: Hücre içerisindeki bütün organellerin planı DNA`da şifre olarak bulunmaktadır. Eğer ana hücre yuttuğu diğer hücreleri organel olarak kullanacaksa onlara ait bilgiyi de DNA`sında şifre olarak önceden bulunduruyor olması gerekirdi. Hatta yutulan hücrelerin DNA`ları da ana hücreye ait bilgilere sahip olmalıydı. Böyle bir durumun gerçekleşmesi ihtimalinin olmamasın


Hiç yorum yok:

Yorum Gönder

Yorum yaptığınız için teşekkürler